Display options
Share it on

Front Cell Dev Biol. 2018 Apr 20;6:28. doi: 10.3389/fcell.2018.00028. eCollection 2018.

Single Cell Multi-Omics Technology: Methodology and Application.

Frontiers in cell and developmental biology

Youjin Hu, Qin An, Katherine Sheu, Brandon Trejo, Shuxin Fan, Ying Guo

Affiliations

  1. Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun-Ye-Sat University, Guangzhou, China.
  2. Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.
  3. The Second Affiliated Hospital, Xiangya School of Medicine, Central South University, Changsha, China.

PMID: 29732369 PMCID: PMC5919954 DOI: 10.3389/fcell.2018.00028

Abstract

In the era of precision medicine, multi-omics approaches enable the integration of data from diverse omics platforms, providing multi-faceted insight into the interrelation of these omics layers on disease processes. Single cell sequencing technology can dissect the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen our understanding of the underlying mechanisms governing both health and disease. Through modification and combination of single cell assays available for transcriptome, genome, epigenome, and proteome profiling, single cell multi-omics approaches have been developed to simultaneously and comprehensively study not only the unique genotypic and phenotypic characteristics of single cells, but also the combined regulatory mechanisms evident only at single cell resolution. In this review, we summarize the state-of-the-art single cell multi-omics methods and discuss their applications, challenges, and future directions.

Keywords: epigenetics; gene regulation; single cell epigenome; single cell multi-omics profiling; single cell proteome; single cell transcriptome

References

  1. Clin Transl Med. 2017 Dec 28;6(1):46 - PubMed
  2. Cell Res. 2016 Mar;26(3):304-19 - PubMed
  3. Genome Res. 2018 Jan;28(1):75-87 - PubMed
  4. Nat Rev Genet. 2016 Jan;17(1):33-46 - PubMed
  5. Nat Biotechnol. 2012 Aug;30(8):763-5 - PubMed
  6. Nat Rev Genet. 2016 Sep 15;17 (10 ):643-56 - PubMed
  7. Genomics. 1992 Jul;13(3):718-25 - PubMed
  8. Cell Rep. 2012 Sep 27;2(3):666-73 - PubMed
  9. Nat Methods. 2017 May;14 (5):491-493 - PubMed
  10. Science. 2017 Apr 21;356(6335): - PubMed
  11. Nat Methods. 2016 Oct;13(10 ):833-6 - PubMed
  12. Genome Biol. 2017 Apr 11;18(1):67 - PubMed
  13. Nat Genet. 2016 Oct;48(10 ):1193-203 - PubMed
  14. Nature. 2011 Apr 7;472(7341):90-4 - PubMed
  15. Genome Res. 2016 Mar;26(3):376-84 - PubMed
  16. Nat Biotechnol. 2014 Apr;32(4):381-386 - PubMed
  17. Eur J Microbiol Immunol (Bp). 2012 Jun;2(2):112-20 - PubMed
  18. Annu Rev Genomics Hum Genet. 2015;16:79-102 - PubMed
  19. Cell Rep. 2016 Jan 12;14 (2):380-9 - PubMed
  20. Nature. 2013 Aug 29;500(7464):593-7 - PubMed
  21. Genome Biol. 2016 May 05;17 :88 - PubMed
  22. Trends Biotechnol. 2016 Aug;34(8):605-608 - PubMed
  23. Cell Stem Cell. 2016 Dec 1;19(6):808-822 - PubMed
  24. Genome Res. 2012 Mar;22(3):568-76 - PubMed
  25. Nat Rev Genet. 2013 Sep;14(9):618-30 - PubMed
  26. Genome Biol. 2013 Apr 17;14(4):R31 - PubMed
  27. Nat Methods. 2014 Aug;11(8):817-820 - PubMed
  28. Nat Commun. 2018 Feb 22;9(1):781 - PubMed
  29. Sci Rep. 2014 Sep 26;4:6485 - PubMed
  30. Nat Biotechnol. 2016 Aug;34(8):852-6 - PubMed
  31. Cell. 2015 May 21;161(5):1202-1214 - PubMed
  32. Genome Res. 2001 Jun;11(6):1095-9 - PubMed
  33. Nature. 2013 Oct 3;502(7469):59-64 - PubMed
  34. Nat Methods. 2017 Apr;14 (4):381-387 - PubMed
  35. Cell Rep. 2015 Mar 3;10(8):1386-97 - PubMed
  36. Bioinformatics. 2015 Jun 15;31(12):1974-80 - PubMed
  37. Trends Genet. 2017 Feb;33(2):155-168 - PubMed
  38. Cell Res. 2017 Aug;27(8):967-988 - PubMed
  39. Nat Methods. 2009 May;6(5):377-82 - PubMed
  40. Nature. 2015 Jul 23;523(7561):486-90 - PubMed
  41. Nat Methods. 2016 Mar;13(3):269-75 - PubMed
  42. Nat Commun. 2015 Apr 16;6:6822 - PubMed
  43. PLoS Comput Biol. 2015 Nov 24;11(11):e1004575 - PubMed
  44. Nature. 2014 May 15;509(7500):371-5 - PubMed
  45. Nat Methods. 2017 Oct;14 (10 ):979-982 - PubMed
  46. Eur J Immunol. 2016 Nov;46(11):2496-2506 - PubMed
  47. Nat Genet. 2011 May;43(5):491-8 - PubMed
  48. Science. 2012 Dec 21;338(6114):1622-6 - PubMed
  49. Nat Commun. 2018 Mar 8;9(1):997 - PubMed
  50. Nat Methods. 2017 Oct;14 (10 ):975-978 - PubMed
  51. Genome Res. 2015 Oct;25(10):1499-507 - PubMed
  52. Nat Rev Genet. 2016 Mar;17(3):175-88 - PubMed
  53. Mol Cell. 2015 May 21;58(4):598-609 - PubMed
  54. Trends Mol Med. 2017 Jun;23 (6):563-576 - PubMed
  55. Brief Bioinform. 2017 Jun 30;:null - PubMed
  56. Nat Biotechnol. 2017 Oct;35(10 ):936-939 - PubMed
  57. Nat Methods. 2015 Jun;12(6):519-22 - PubMed
  58. Nat Methods. 2016 Mar;13(3):229-232 - PubMed
  59. Nature. 2017 Oct 11;550(7675):249-254 - PubMed
  60. Nat Protoc. 2017 Dec;12 (12 ):2531-2553 - PubMed
  61. Nature. 1970 Aug 8;227(5258):561-3 - PubMed
  62. Genome Biol. 2017 Mar 28;18(1):59 - PubMed
  63. Science. 2017 Aug 11;357(6351):600-604 - PubMed
  64. Nat Protoc. 2014 Jan;9(1):171-81 - PubMed
  65. Nat Methods. 2017 Sep;14 (9):865-868 - PubMed
  66. Int J Comput Biol Drug Des. 2008;1(4):368-95 - PubMed
  67. Nat Biotechnol. 2016 Feb;34(2):199-203 - PubMed
  68. BMC Neurosci. 2016 Jun 01;17 (1):30 - PubMed
  69. Genome Res. 2013 Dec;23(12):2126-35 - PubMed
  70. Science. 2016 Apr 8;352(6282):189-96 - PubMed
  71. Heredity (Edinb). 2012 Jan;108(1):50-8 - PubMed
  72. Cell Syst. 2017 Apr 26;4(4):458-469.e5 - PubMed
  73. BMC Bioinformatics. 2016 Mar 22;17 :140 - PubMed
  74. Nat Biotechnol. 2015 Mar;33(3):285-289 - PubMed
  75. Nat Methods. 2017 May;14 (5):483-486 - PubMed
  76. Nat Biotechnol. 2015 Nov;33(11):1165-72 - PubMed

Publication Types