Display options
Share it on

Mar Policy. 2017;85:56-64. doi: 10.1016/j.marpol.2017.08.014.

Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems.

Marine policy

John A Darling, Bella S Galil, Gary R Carvalho, Marc Rius, Frédérique Viard, Stefano Piraino

Affiliations

  1. National Exposure Research Laboratory, United States Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA.
  2. The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 6997801, Israel.
  3. School of Biological Sciences, University of Bangor, UK.
  4. Ocean and Earth Science, National Oceanography Centre, University of Southampton, UK.
  5. Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, South Africa.
  6. Sorbonne Université, Université Paris 06, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.
  7. Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy.
  8. Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy.

PMID: 29681680 PMCID: PMC5909192 DOI: 10.1016/j.marpol.2017.08.014

Abstract

The European Union's Marine Strategy Framework Directive (MSFD) aims to adopt integrated ecosystem management approaches to achieve or maintain "Good Environmental Status" for marine waters, habitats and resources, including mitigation of the negative effects of non-indigenous species (NIS). The Directive further seeks to promote broadly standardized monitoring efforts and assessment of temporal trends in marine ecosystem condition, incorporating metrics describing the distribution and impacts of NIS. Accomplishing these goals will require application of advanced tools for NIS surveillance and risk assessment, particularly given known challenges associated with surveying and monitoring with traditional methods. In the past decade, a host of methods based on nucleic acids (DNA and RNA) analysis have been developed or advanced that promise to dramatically enhance capacity in assessing and managing NIS. However, ensuring that these rapidly evolving approaches remain accessible and responsive to the needs of resource managers remains a challenge. This paper provides recommendations for future development of these genetic tools for assessment and management of NIS in marine systems, within the context of the explicit requirements of the MSFD. Issues considered include technological innovation, methodological standardization, data sharing and collaboration, and the critical importance of shared foundational resources, particularly integrated taxonomic expertise. Though the recommendations offered here are not exhaustive, they provide a basis for future intentional (and international) collaborative development of a genetic toolkit for NIS research, capable of fulfilling the immediate and long term goals of marine ecosystem and resource conservation.

Keywords: Early detection; Environmental DNA; Good environmental status; High throughput sequencing; Marine Strategy Framework Directive; Marine invasive species; Metabarcoding; Monitoring; Surveillance

References

  1. Mol Ecol Resour. 2009 Mar;9(2):439-57 - PubMed
  2. Parasitology. 2002;124 Suppl:S137-51 - PubMed
  3. R Soc Open Sci. 2015 Jul 22;2(7):150088 - PubMed
  4. ISME J. 2014 Jun;8(6):1175-85 - PubMed
  5. Environ Sci Technol. 2014;48(3):1819-27 - PubMed
  6. Ann Rev Mar Sci. 2010;2:367-93 - PubMed
  7. Science. 2008 Feb 15;319(5865):948-52 - PubMed
  8. Biol Lett. 2008 Aug 23;4(4):423-5 - PubMed
  9. Curr Zool. 2016 Dec;62(6):629-642 - PubMed
  10. Mol Ecol Resour. 2017 May;17 (3):443-453 - PubMed
  11. Mol Ecol. 2016 Nov;25(21):5527-5542 - PubMed
  12. PeerJ. 2016 Sep 13;4:e2444 - PubMed
  13. Environ Sci Technol. 2015 Jul 21;49(14):8396-407 - PubMed
  14. Q Rev Biol. 2010 Sep;85(3):319-40 - PubMed
  15. Mol Ecol Resour. 2016 May;16(3):604-7 - PubMed
  16. Mol Ecol. 2008 Feb;17(4):1020-35 - PubMed
  17. Elife. 2014 Jul 17;3: - PubMed
  18. Nat Rev Microbiol. 2015 Mar;13(3):133-46 - PubMed
  19. Mol Ecol. 2016 Feb;25(4):929-42 - PubMed
  20. Curr Biol. 2012 Dec 4;22(23):2189-202 - PubMed
  21. Integr Biol (Camb). 2009 Oct;1(10):574-86 - PubMed
  22. Mol Ecol. 2017 Jun;26(12 ):3104-3115 - PubMed
  23. Science. 2016 Nov 11;354(6313):710-711 - PubMed
  24. BMC Genomics. 2008 May 12;9:214 - PubMed
  25. PLoS One. 2014 Jul 31;9(7):e103767 - PubMed
  26. PLoS One. 2014 May 06;9(5):e96928 - PubMed
  27. Ecol Lett. 2007 Aug;10(8):663-72 - PubMed
  28. Environ Sci Technol. 2015 Apr 7;49(7):4113-21 - PubMed
  29. R Soc Open Sci. 2015 Apr 22;2(4):150039 - PubMed
  30. PLoS One. 2013;8(1):e51273 - PubMed
  31. Proc Biol Sci. 2015 Jan 22;282(1799):20141517 - PubMed
  32. PLoS One. 2015 May 27;10 (5):e0125801 - PubMed
  33. PLoS One. 2014 Jan 15;9(1):e86175 - PubMed
  34. Proc Natl Acad Sci U S A. 2016 May 17;113(20):5646-51 - PubMed
  35. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 - PubMed
  36. Mol Ecol Resour. 2014 Sep;14(5):1049-59 - PubMed
  37. Ecol Lett. 2017 Apr;20(4):524-538 - PubMed
  38. Ecol Evol. 2015 Jun;5(11):2252-66 - PubMed
  39. Sci Rep. 2015 Jul 22;5:12162 - PubMed
  40. J Microbiol Methods. 2010 Aug;82(2):124-30 - PubMed
  41. Ecol Lett. 2013 Oct;16(10):1245-57 - PubMed
  42. Science. 2014 Aug 8;345(6197):626-8 - PubMed
  43. Mar Genomics. 2016 Dec;30:55-65 - PubMed
  44. Mol Ecol. 2012 Apr;21(8):1834-47 - PubMed
  45. Mol Ecol Resour. 2016 May;16(3):673-85 - PubMed
  46. J Biomed Biotechnol. 2009;2009:574398 - PubMed
  47. Environ Res. 2011 Oct;111(7):978-88 - PubMed
  48. Mol Ecol. 2010 Mar;19 Suppl 1:32-40 - PubMed
  49. J Microbiol Methods. 2016 Dec;131:61-67 - PubMed
  50. Nat Rev Genet. 2009 May;10 (5):331-5 - PubMed
  51. Mol Ecol. 2012 Jun;21(11):2555-8 - PubMed
  52. Mol Phylogenet Evol. 2013 Oct;69(1):39-45 - PubMed
  53. Trends Biotechnol. 2014 Mar;32(3):132-9 - PubMed
  54. Trends Ecol Evol. 2014 Oct;29(10):566-71 - PubMed
  55. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16208-12 - PubMed
  56. Trends Ecol Evol. 2017 Jun;32(6):464-474 - PubMed
  57. PLoS One. 2014 Jul 30;9(7):e103826 - PubMed
  58. Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10565-7 - PubMed
  59. PLoS One. 2015 Nov 17;10(11):e0143123 - PubMed
  60. Environ Sci Technol. 2011 Nov 15;45(22):9658-65 - PubMed
  61. Curr Opin Microbiol. 2016 Jun;31:132-139 - PubMed
  62. Microbes Environ. 2012;27(2):111-21 - PubMed
  63. Mol Ecol. 2017 Apr;26(8):2379-2391 - PubMed
  64. PLoS One. 2012;7(4):e35815 - PubMed
  65. Trends Ecol Evol. 2012 Apr;27(4):233-43 - PubMed
  66. Mar Biol. 2016;163(12 ):250 - PubMed
  67. Nat Commun. 2017 Jan 18;8:14087 - PubMed
  68. Sci Rep. 2013 Nov 12;3:3197 - PubMed
  69. Mol Ecol Resour. 2014 Jan;14(1):109-16 - PubMed
  70. Microb Ecol. 2016 Apr;71(3):530-42 - PubMed
  71. PLoS One. 2012;7(8):e41781 - PubMed
  72. Proc Biol Sci. 2007 Jan 22;274(1607):199-207 - PubMed
  73. Science. 1993 Jul 2;261(5117):78-82 - PubMed
  74. Mol Ecol. 2015 Feb;24(3):525-44 - PubMed

Publication Types

Grant support