Display options
Share it on

Atmos Environ (1994). 2017;166:204-214. doi: 10.1016/j.atmosenv.2017.07.025.

Constraints on primary and secondary particulate carbon sources using chemical tracer and .

Atmospheric environment (Oxford, England : 1994)

Rebecca J Sheesley, Punith Dev Nallathamby, Jason D Surratt, Anita Lee, Michael Lewandowski, John H Offenberg, Mohammed Jaoui, Tadeusz E Kleindienst

Affiliations

  1. Department of Environmental Science, Baylor University, Waco, Texas.
  2. Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina.
  3. U.S. Environmental Protection Agency, Region 9, San Francisco, California.
  4. National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

PMID: 29681757 PMCID: PMC5906818 DOI: 10.1016/j.atmosenv.2017.07.025

Abstract

The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography - mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (

Keywords: CalNex; chemical mass balance; primary organic aerosol; radiocarbon; secondary organic aerosol

References

  1. Environ Sci Technol. 2012 Nov 20;46(22):12435-44 - PubMed
  2. Environ Sci Technol. 2002 Jun 1;36(11):2361-71 - PubMed
  3. Environ Sci Technol. 2009 May 15;43(10):3448-54 - PubMed
  4. J Air Waste Manag Assoc. 2006 Jun;56(6):709-42 - PubMed
  5. Environ Sci Technol. 2008 May 1;42(9):3303-9 - PubMed
  6. Science. 2009 Dec 11;326(5959):1525-9 - PubMed
  7. Anal Chem. 2004 Aug 15;76(16):4765-78 - PubMed
  8. J Air Waste Manag Assoc. 2007 Feb;57(2):228-42 - PubMed
  9. J Air Waste Manag Assoc. 2010 Nov;60(11):1388-99 - PubMed
  10. Environ Sci Technol. 1994 Sep 1;28(9):1633-49 - PubMed
  11. Environ Sci Technol. 2007 Jun 1;41(11):3972-6 - PubMed
  12. Environ Sci Technol. 2008 Oct 15;42(20):7655-62 - PubMed
  13. Science. 2007 Mar 2;315(5816):1259-62 - PubMed
  14. Environ Sci Technol. 2013 Sep 17;47(18):10454-61 - PubMed
  15. Environ Sci Technol. 2012 Aug 21;46(16):8773-81 - PubMed
  16. J Air Waste Manag Assoc. 2007 Oct;57(10):1200-13 - PubMed
  17. Environ Sci Technol. 2001 May 1;35(9):1716-28 - PubMed
  18. Environ Sci Technol. 2002 Mar 15;36(6):1169-80 - PubMed
  19. Environ Sci Technol. 2015 Oct 6;49(19):11631-9 - PubMed
  20. Environ Sci Technol. 2005 Aug 1;39(15):5661-73 - PubMed
  21. Environ Sci Technol. 2009 Aug 1;43(15):5790-6 - PubMed
  22. Environ Sci Technol. 2007 Aug 15;41(16):5763-9 - PubMed
  23. Science. 2001 Dec 7;294(5549):2119-24 - PubMed
  24. J Air Waste Manag Assoc. 2007 Oct;57(10):1190-9 - PubMed
  25. Science. 1992 Jan 24;255(5043):423-30 - PubMed
  26. Environ Sci Technol. 2007 Mar 1;41(5):1628-34 - PubMed
  27. Environ Sci Technol. 2009 Jul 1;43(13):4744-9 - PubMed
  28. N Engl J Med. 2009 Jan 22;360(4):376-86 - PubMed

Publication Types

Grant support