Display options
Share it on

Front Neurosci. 2018 Apr 06;12:227. doi: 10.3389/fnins.2018.00227. eCollection 2018.

A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance.

Frontiers in neuroscience

Jianjun Meng, Bradley J Edelman, Jaron Olsoe, Gabriel Jacobs, Shuying Zhang, Angeliki Beyko, Bin He

Affiliations

  1. Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States.
  2. Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
  3. Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States.

PMID: 29681792 PMCID: PMC5897442 DOI: 10.3389/fnins.2018.00227

Abstract

Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session-performance increases asymptotically by increasing the number of channels, saturates, and then decreases-no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method.

Keywords: BCI; CSP; EEG; channel configuration; electrode number

References

  1. Neuroimage. 2014 Jan 15;85 Pt 1:432-44 - PubMed
  2. IEEE Trans Biomed Eng. 2011 Feb;58(2):355-62 - PubMed
  3. Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94 - PubMed
  4. IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9 - PubMed
  5. IEEE Trans Rehabil Eng. 2000 Dec;8(4):447-56 - PubMed
  6. IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6 - PubMed
  7. Sci Rep. 2015 Aug 07;5:12815 - PubMed
  8. Neurosci Lett. 2003 Nov 6;351(1):33-6 - PubMed
  9. Brain Stimul. 2016 Nov - Dec;9(6):834-841 - PubMed
  10. IEEE Trans Biomed Eng. 2008 Oct;55(10):2452-62 - PubMed
  11. Clin Neurophysiol. 2002 Jun;113(6):767-91 - PubMed
  12. Ann Neurol. 2013 Jul;74(1):100-8 - PubMed
  13. IEEE Rev Biomed Eng. 2014;7:50-72 - PubMed
  14. IEEE Trans Neural Syst Rehabil Eng. 2017 Jul;25(7):1009-1017 - PubMed
  15. Electroencephalogr Clin Neurophysiol. 1975 Nov;39(5):526-30 - PubMed
  16. Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54 - PubMed
  17. Sci Rep. 2016 Aug 11;6:30383 - PubMed
  18. Biol Psychol. 2012 Jan;89(1):80-6 - PubMed
  19. J Neurosci Methods. 2015 Mar 30;243:103-10 - PubMed
  20. J Neural Eng. 2013 Aug;10(4):046003 - PubMed
  21. J Neural Eng. 2011 Apr;8(2):025020 - PubMed
  22. Ann Neurol. 2015 May;77(5):851-65 - PubMed
  23. Brain Res Cogn Brain Res. 2005 Dec;25(3):668-77 - PubMed
  24. J Neurosci Methods. 2004 Mar 15;134(1):9-21 - PubMed
  25. Biomed Tech (Berl). 2010 Feb;55(1):5-18 - PubMed
  26. Comput Intell Neurosci. 2007;:94397 - PubMed
  27. IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 - PubMed
  28. Neuroimage. 2015 Jul 1;114:438-47 - PubMed
  29. J Neuroeng Rehabil. 2015 Sep 24;12:80 - PubMed
  30. IEEE Trans Biomed Eng. 2004 Jun;51(6):1003-10 - PubMed
  31. J Neural Eng. 2007 Jun;4(2):R1-R13 - PubMed
  32. IEEE J Biomed Health Inform. 2014 Jul;18(4):1461-72 - PubMed
  33. IEEE Trans Biomed Eng. 2011 Jun;58(6):1865-73 - PubMed
  34. IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):120-3 - PubMed
  35. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E6058-67 - PubMed
  36. Sci Rep. 2016 Dec 14;6:38565 - PubMed
  37. Int J Psychophysiol. 2015 Sep;97(3):271-6 - PubMed
  38. Front Neurosci. 2012 Jul 13;6:55 - PubMed
  39. Technology (Singap World Sci). 2014 Sep;2(3):254-260 - PubMed
  40. Neuroimage. 2008 Jul 15;41(4):1471-83 - PubMed
  41. J Neural Eng. 2015 Feb;12(1):016005 - PubMed
  42. Brain Topogr. 2010 Jun;23(2):186-93 - PubMed
  43. Front Neurosci. 2010 Jul 21;4:null - PubMed
  44. Biomed Eng Online. 2015 Oct 21;14:93 - PubMed
  45. J Neural Eng. 2011 Jun;8(3):036006 - PubMed
  46. IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):153-9 - PubMed
  47. Front Neurosci. 2012 Mar 29;6:39 - PubMed
  48. Neuroimage. 2006 May 15;31(1):153-9 - PubMed
  49. IEEE Trans Biomed Eng. 2016 Jan;63(1):4-14 - PubMed

Publication Types