Display options
Share it on

Front Physiol. 2018 Apr 24;9:406. doi: 10.3389/fphys.2018.00406. eCollection 2018.

Amniotic Fluid INSL3 Measured During the Critical Time Window in Human Pregnancy Relates to Cryptorchidism, Hypospadias, and Phthalate Load: A Large Case-Control Study.

Frontiers in physiology

Ravinder Anand-Ivell, Arieh Cohen, Bent Nørgaard-Pedersen, Bo A G Jönsson, Jens-Peter Bonde, David M Hougaard, Christian H Lindh, Gunnar Toft, Morten S Lindhard, Richard Ivell

Affiliations

  1. School of Biosciences, University of Nottingham, Nottingham, United Kingdom.
  2. Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark.
  3. Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
  4. Department of Occupational and Environmental Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
  5. Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.
  6. Perinatal Epidemiology Research Unit, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
  7. School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom.

PMID: 29740335 PMCID: PMC5928321 DOI: 10.3389/fphys.2018.00406

Abstract

The period of the first to second trimester transition in human pregnancy represents a sensitive window for fetal organogenesis, particularly in regard to the development of the male reproductive system. This is a time of relative analytical inaccessibility. We have used a large national biobank of amniotic fluid samples collected at routine amniocentesis to determine the impacts of exogenous endocrine disruptor load on specific fetal biomarkers at this critical time. While adrenal and testicular steroids are highly correlated, they are also mostly positively influenced by increasing phthalate load, represented by the metabolites 7cx-MMeHP and 5cx-MEPP, by perfluorooctane sulfonate (PFOS) exposure, and by smoking, suggesting an adrenal stress response. In contrast, the testis specific biomarkers insulin-like peptide 3 (INSL3) and androstenedione are negatively impacted by the phthalate endocrine disruptors. Using a case-control design, we show that cryptorchidism and hypospadias are both significantly associated with increased amniotic concentration of INSL3 during gestational weeks 13-16, and some, though not all steroid biomarkers. Cases are also linked to a specifically increased variance in the Leydig cell biomarker INSL3 compared to controls, an effect exacerbated by maternal smoking. No influence of phthalate metabolites or PFOS was evident on the distribution of cases and controls. Considering that several animal and human studies have shown a negative impact of phthalate load on fetal and cord blood INSL3, respectively, the present results suggest that such endocrine disruptors may rather be altering the relative dynamics of testicular development and consequent hormone production, leading to a desynchronization of tissue organization during fetal development. Being born small for gestational age appears not to impact on the testicular biomarker INSL3 in second trimester amniotic fluid.

Keywords: INSL3; PFOS; amniotic fluid; cryptorchidism; fetal steroids; hypospadias; phthalate; testicular dysgenesis syndrome

References

  1. Arch Gynecol Obstet. 2014 May;289(5):967-72 - PubMed
  2. Reproduction. 2014 Mar 02;147(4):435-42 - PubMed
  3. Nat Genet. 1999 Jul;22(3):295-9 - PubMed
  4. Acta Paediatr. 1996 Jul;85(7):843-8 - PubMed
  5. Horm Metab Res. 2010 Jul;42(8):543-52 - PubMed
  6. Int J Androl. 2006 Feb;29(1):140-7; discussion 181-5 - PubMed
  7. Am J Obstet Gynecol. 1989 Aug;161(2):382-8 - PubMed
  8. Dev Dyn. 2013 Apr;242(4):320-9 - PubMed
  9. Reproduction. 2014 Mar 06;147(4):R119-29 - PubMed
  10. BJOG. 2014 May;121(6):686-99 - PubMed
  11. Anat Rec. 1999 Jul 1;255(3):306-15 - PubMed
  12. Endocr Rev. 2009 Dec;30(7):883-925 - PubMed
  13. Endocrinology. 2000 Feb;141(2):846-9 - PubMed
  14. Toxicol Sci. 2016 Jan;149(1):178-91 - PubMed
  15. Epidemiology. 2015 Jan;26(1):91-9 - PubMed
  16. Int J Androl. 2009 Jun;32(3):187-97 - PubMed
  17. Placenta. 2007 Aug-Sep;28(8-9):816-23 - PubMed
  18. Mol Hum Reprod. 2010 Dec;16(12):886-95 - PubMed
  19. Environ Health Perspect. 2005 Aug;113(8):1056-61 - PubMed
  20. Nat Rev Endocrinol. 2014 Sep;10(9):553-62 - PubMed
  21. Hum Reprod Update. 2009 Jul-Aug;15(4):463-76 - PubMed
  22. Reproduction. 2014 Mar 02;147(4):R87-95 - PubMed
  23. Clin Endocrinol (Oxf). 2009 Oct;71(4):459-65 - PubMed
  24. PLoS One. 2016 Jun 15;11(6):e0157954 - PubMed
  25. J Clin Endocrinol Metab. 1999 Aug;84(8):2724-8 - PubMed
  26. Endocrinology. 2004 Oct;145(10):4712-20 - PubMed
  27. Endocrinology. 2007 Nov;148(11):5507-19 - PubMed
  28. Obstet Gynecol. 1999 Jan;93(1):25-9 - PubMed
  29. Acta Biomed. 2004;75 Suppl 1:11-3 - PubMed
  30. Hum Reprod Update. 2014 Mar-Apr;20(2):231-49 - PubMed
  31. Sci Rep. 2017 Mar 10;7:44184 - PubMed
  32. Best Pract Res Clin Endocrinol Metab. 2010 Apr;24(2):279-89 - PubMed
  33. Environ Health. 2009 Aug 18;8:37 - PubMed
  34. Hum Reprod. 2013 Nov;28(11):3093-102 - PubMed
  35. Asian J Androl. 2013 Mar;15(2):261-8 - PubMed
  36. Dan Med Bull. 1998 Jun;45(3):320-3 - PubMed
  37. Int J Androl. 2008 Apr;31(2):178-87 - PubMed
  38. Environ Health Perspect. 2012 Jun;120(6):897-903 - PubMed
  39. J Clin Endocrinol Metab. 2008 Oct;93(10):4048-51 - PubMed
  40. Trends Endocrinol Metab. 2009 Apr;20(3):139-45 - PubMed
  41. Reproduction. 2010 Apr;139(4):759-69 - PubMed
  42. J Perinatol. 2005 May;25(5):341-8 - PubMed
  43. JCI Insight. 2017 Mar 23;2(6):e91204 - PubMed
  44. Hum Reprod Update. 2016 Dec;23 (1):104-125 - PubMed
  45. J Reprod Med. 1989 Aug;34(8):511-6 - PubMed
  46. J Clin Endocrinol Metab. 1989 Jul;69(1):204-8 - PubMed
  47. J Steroid Biochem Mol Biol. 2004 Aug;91(4-5):247-57 - PubMed
  48. Clin Endocrinol (Oxf). 2015 Feb;82(2):242-7 - PubMed
  49. Environ Health Perspect. 2015 Jan;123(1):101-7 - PubMed
  50. Ultrasound Obstet Gynecol. 2005 Jun;25(6):546-50 - PubMed
  51. Environ Res. 2008 Oct;108(2):168-76 - PubMed
  52. Hum Reprod. 2001 May;16(5):972-8 - PubMed
  53. Endocrinology. 2005 Oct;146(10):4536-44 - PubMed
  54. Horm Res. 2006;65 Suppl 3:116-22 - PubMed
  55. Endocrinology. 2003 Aug;144(8):3279-84 - PubMed
  56. Hum Reprod. 2008 May;23(5):1180-6 - PubMed
  57. Endocr Rev. 2013 Oct;34(5):725-52 - PubMed
  58. Arch Gynecol Obstet. 2010 Feb;281(2):235-40 - PubMed
  59. Steroids. 2013 Jan;78(1):15-25 - PubMed
  60. PLoS One. 2011;6(5):e19821 - PubMed
  61. Int J Androl. 2012 Jun;35(3):377-84 - PubMed
  62. Environ Health Perspect. 2007 Mar;115(3):390-6 - PubMed
  63. Hum Reprod. 2007 Dec;22(12):3047-50 - PubMed
  64. Environ Health Perspect. 2016 Jan;124(1):151-6 - PubMed
  65. Dan Med Bull. 2006 Nov;53(4):441-9 - PubMed
  66. Scand J Public Health. 2011 Jul;39(7 Suppl):30-3 - PubMed
  67. J Clin Endocrinol Metab. 2007 Oct;92(10):4020-7 - PubMed
  68. J Clin Endocrinol Metab. 2013 Nov;98(11):E1757-67 - PubMed
  69. Mol Endocrinol. 1999 May;13(5):681-91 - PubMed
  70. Clin Endocrinol (Oxf). 2009 Aug;71(2):261-72 - PubMed

Publication Types