Display options
Share it on

Nat Nanotechnol. 2018 Aug;13(8):708-714. doi: 10.1038/s41565-018-0120-4. Epub 2018 Apr 30.

A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations.

Nature nanotechnology

Mark M Falinski, Desiree L Plata, Shauhrat S Chopra, Thomas L Theis, Leanne M Gilbertson, Julie B Zimmerman

Affiliations

  1. Department of Environmental Engineering, Yale University, New Haven, CT, USA.
  2. Institute for Environmental Science and Policy, University of Illinois at Chicago, Chicago, IL, USA.
  3. School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
  4. Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
  5. Department of Environmental Engineering, Yale University, New Haven, CT, USA. [email protected].
  6. School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA. [email protected].

PMID: 29713076 DOI: 10.1038/s41565-018-0120-4

Abstract

Engineered nanomaterials (ENMs) and ENM-enabled products have emerged as potentially high-performance replacements to conventional materials and chemicals. As such, there is an urgent need to incorporate environmental and human health objectives into ENM selection and design processes. Here, an adapted framework based on the Ashby material selection strategy is presented as an enhanced selection and design process, which includes functional performance as well as environmental and human health considerations. The utility of this framework is demonstrated through two case studies, the design and selection of antimicrobial substances and conductive polymers, including ENMs, ENM-enabled products and their alternatives. Further, these case studies consider both the comparative efficacy and impacts at two scales: (i) a broad scale, where chemical/material classes are readily compared for primary decision-making, and (ii) within a chemical/material class, where physicochemical properties are manipulated to tailor the desired performance and environmental impact profile. Development and implementation of this framework can inform decision-making for the implementation of ENMs to facilitate promising applications and prevent unintended consequences.

References

  1. Schodek, D. L., Ferreira, P. & Ashby, M. F. Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects (Butterworth-Heinemann, Oxford, 2009). - PubMed
  2. Eckelman, M. J., Zimmerman, J. B. & Anastas, P. T. Toward green nano. J. Ind. Ecol. 12, 316–328 (2008). - PubMed
  3. Gilbertson, L. M., Zimmerman, J. B., Plata, D. L., Hutchison, J. E. & Anastas, P. T. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry. Chem. Soc. Rev. 44, 5758–5777 (2015). - PubMed
  4. Wacker, M. G., Proykova, A. & Santos, G. M. L. Dealing with nanosafety around the globe—regulation vs. innovation. Int. J. Pharm. 509, 95–106 (2016). - PubMed
  5. NSTC/CoT/NSET NNI Supplement to the President’s 2012 Budget: United States National Nanotechnology Initiative; 2011 (NNI, 2011). - PubMed
  6. NNI/NSET NNI Supplement to the President’s 2013 Budget: United States National Nanotechnology Initiative; 2012 (NNI, 2012). - PubMed
  7. NNI/NSET NNI Supplement to the President’s 2011 Budget: United States National Nanotechnology Initiative; 2010 (NNI, 2010). - PubMed
  8. NSTC/CoT/NSET NNI Supplement to the President’s 2017 Budget: United States National Nanotechnology Initiative; 2016 (NNI, 2016). - PubMed
  9. NSTC/CoT/NSET NNI Supplement to the President’s 2016 Budget: United States National Nanotechnology Initiative; 2015 (NNI, 2015). - PubMed
  10. NSTC/CoT/NSET NNI Supplement to the President’s 2015 Budget: United States National Nanotechnology Initiative; 2014 (NNI, 2014). - PubMed
  11. NSTC/CoT/NSET NNI Supplement to the President’s 2014 Budget: United States National Nanotechnology Initiative; 2013 (NNI, 2013). - PubMed
  12. NSTC/NNI/NSET NNI Supplement to the President’s 2010 Budget: United States National Nanotechnology Initiative; 2009 (NNI, 2008). - PubMed
  13. NSTC/NNI/NSET NNI Supplement to the President’s 2009 Budget; 2008 (NNI, 2008). - PubMed
  14. Zimmerman, J. B. & Anastas, P. T. Toward substitution with no regrets. Science 347, 1198–1199 (2015). - PubMed
  15. Lucht, J. M. Public acceptance of plant biotechnology and GM crops. Viruses 7, 4254–4281 (2015). - PubMed
  16. Linkov, I. & Seager, T. P. Coupling multi-criteria decision analysis, life-cycle assessment, and risk assessment for emerging threats. Environ. Sci. Technol. 45, 5068–5074 (2011). - PubMed
  17. Seager, T. P. & Linkov, I. Coupling multicriteria decision analysis and life cycle assessment for nanomaterials. J. Ind. Ecol. 12, 282–285 (2008). - PubMed
  18. van Harmelen, T. et al. LICARA nanoSCAN—a tool for the self-assessment of benefits and risks of nanoproducts. Environ. Int. 91, 150–160 (2016). - PubMed
  19. Ashby, M. F. Materials Selection in Mechanical Design (Pergamon Press, Oxford, 1992). - PubMed
  20. Karana, E., Hekkert, P. & Kandachar, P. Material considerations in product design: A survey on crucial material aspects used by product designers. Mater. & Des. 29, 1081–1089 (2008). - PubMed
  21. Ashby, M. F. Materials and the Environment: Eco-Informed Material Choice (Elsevier, Oxford, 2012). - PubMed
  22. Dicker, M. P. M. et al. Green composites: a review of material attributes and complementary applications. Compos. Part A: Appl. Sci. Manuf. 56, 280–289 (2014). - PubMed
  23. Lin, S., Zhao, Y., Nel, A. E. & Lin, S. Zebrafish: an in vivo model for nano EHS studies. Small 9, 1608–1618 (2013). - PubMed
  24. Chakraborty, C., Sharma, A. R., Sharma, G. & Lee, S.-S. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J. Nanobiotechnol. 14, 65 (2016). - PubMed
  25. FDA issues final rule on safety and effectiveness of antibacterial soaps (ed. Fischer, A.) (US FDA, 2016). - PubMed
  26. Eftekhari, A., Li, L. & Yang, Y. Polyaniline supercapacitors. J. Power Sources 347, 86–107 (2017). - PubMed
  27. Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W. & Hazan, R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid. Based Complement. Altern. Med. 2015, 246012 (2015). - PubMed
  28. Gust, K. A., Collier, Z. A., Mayo, M. L., Stanley, J. K., Gong, P. & Chappell, M. A. Limitations of toxicity characterization in life cycle assessment: can adverse outcome pathways provide a new foundation? Integr. Environ. Assess. Manag. 12, 580–590 (2016). - PubMed
  29. National Research Council Risk Assessment in the Federal Government: Managing the Process Working Papers (National Academies Press, 1983). - PubMed
  30. The Global Market for Nanotechnology and Nanomaterials (Future Markets, 2016). - PubMed
  31. Lohan, S. et al. Studies on enhancement of anti-microbial activity of pristine MWCNTs against pathogens. AAPS PharmSciTech 17, 1042–1048 (2016). - PubMed
  32. Zardini, H. Z., Amiri, A., Shanbedi, M., Maghrebi, M. & Baniadam, M. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf. B 92, 196–202 (2012). - PubMed
  33. Tayel, A. A. et al. Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Saf. 31, 211–218 (2011). - PubMed
  34. Agnihotri, S., Mukherji, S. & Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974–3983 (2014). - PubMed
  35. Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N. & Valsami-Jones, E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 438, 225–232 (2012). - PubMed
  36. Upadhyayula, V. K. K., Meyer, D. E., Curran, M. A. & Gonzalez, M. A. Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J. Clean. Prod. 26, 37–47 (2012). - PubMed
  37. CES Selector 2017 (Granta Design, 2017). - PubMed
  38. Lu, X., Zhang, W., Wang, C., Wen, T.-C. & Wei, Y. One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog. Polym. Sci. 36, 671–712 (2011). - PubMed
  39. Caballero-Guzman, A. & Nowack, B. A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ. Pollut. 213, 502–517 (2016). - PubMed
  40. Gilbertson, L. M. et al. Shape-dependent surface reactivity and antimicrobial activity of nano-cupric oxide. Environ. Sci. Technol. 50, 3975–3984 (2016). - PubMed
  41. Gilbertson, L. M., Goodwin, D. G., Taylor, A. D., Pfefferle, L. & Zimmerman, J. B. Toward tailored functional design of multi-walled carbon nanotubes (MWNTs): electrochemical and antimicrobial activity enhancement via oxidation and selective reduction. Environ. Sci. Technol. 48, 5938–5945 (2014). - PubMed
  42. Deng, Y. M. & Edwards, K. L. The role of materials identification and selection in engineering design. Mater. Des. 28, 131–139 (2007). - PubMed
  43. Richman, E. K. & Hutchison, J. E. The nanomaterial characterization bottleneck. ACS Nano 3, 2441–2446 (2009). - PubMed
  44. Standard Test Methods for Tension Testing of Metallic Materials, E8/E8M-13 (ASTM International, 2016). - PubMed
  45. Baker, N. A. et al. Standardizing data. Nat. Nanotech. 8, 73–74 (2013). - PubMed
  46. Mulvaney, P., Parak, W. J., Caruso, F. & Weiss, P. S. Standardizing nanomaterials. ACS Nano 10, 9763–9764 (2016). - PubMed
  47. Klaine, S. J. et al. Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 31, 3–14 (2012). - PubMed

Publication Types