Display options
Share it on

Microb Cell Fact. 2018 May 09;17(1):69. doi: 10.1186/s12934-018-0917-8.

Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask.

Microbial cell factories

P Philip, D Kern, J Goldmanns, F Seiler, A Schulte, T Habicher, J Büchs

Affiliations

  1. AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
  2. AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany. [email protected].

PMID: 29743073 PMCID: PMC5941677 DOI: 10.1186/s12934-018-0917-8

Abstract

BACKGROUND: Screening in the fed-batch operation mode is essential for biological cultivations facing challenges as oxygen limitation, osmotic inhibition, catabolite repression, substrate inhibition or overflow metabolism. As a screening tool on shake flask level, the membrane-based fed-batch shake flask was developed. While a controlled supply of a substrate was realized with the in-built membrane tip, the possibilities for replenishing nutrients and stabilizing pH values was not yet exploited. High buffer concentrations were initially used, shifting the medium osmolality out of the biological optimum. As the growth rate is predefined by the glucose release kinetics from the reservoir, the resulting medium acidification can be compensated with a controlled continuous supply of an alkaline compound. The focus of this research is to establish a simultaneous multi-component release of glucose and an alkaline compound from the reservoir to enable cultivations within the optimal physiological range of Escherichia coli.

RESULTS: In combination with the Respiratory Activity MOnitoring System, the membrane-based fed-batch shake flask enabled the detection of an ammonium limitation. The multi-component release of ammonium carbonate along with glucose from the reservoir resulted not only in the replenishment of the nitrogen source but also in the stabilization of the pH value in the culture medium. A biomass concentration up to 25 g/L was achieved, which is one of the highest values obtained so far to the best of the author's knowledge with the utilization of a shake flask and a defined synthetic medium. Going a step further, the pH stabilization allowed the decrease of the required buffer amount to one-fourth establishing an optimal osmolality range for cultivation. As optimal physiological conditions were implemented with the multi-component release fed-batch cultivation, the supply of 0.2 g glucose in a 10 mL initial culture medium volume with 50 mM MOPS buffer resulted in a twofold higher biomass concentration than in a comparable batch cultivation.

CONCLUSIONS: The newly introduced multi-component release with the membrane-based fed-batch shake flask serves a threefold purpose of replenishing depleted substrates in the culture medium, stabilizing the pH throughout the entire cultivation time and minimizing the necessary amount of buffer to maintain an optimal osmolality range. In comparison to a batch cultivation, these settings enable to achieve higher biomass and product concentrations.

Keywords: Escherichia coli; Fed-batch; MOPS buffer; Osmolality; RAMOS; Screening; Secondary substrate limitation; Shake flask; pH

References

  1. J Ind Microbiol Biotechnol. 2015 Apr;42(4):585-600 - PubMed
  2. Curr Microbiol. 2006 May;52(5):400-6 - PubMed
  3. Microb Cell Fact. 2009 Aug 01;8:42 - PubMed
  4. J Biotechnol. 1991 Aug;20(1):17-27 - PubMed
  5. Biotechnol Bioeng. 1990 Jun 5;36(1):1-11 - PubMed
  6. Pflugers Arch. 2006 Mar;451(6):701-7 - PubMed
  7. Appl Environ Microbiol. 1994 Oct;60(10):3724-31 - PubMed
  8. Biotechnol Bioeng. 2009 Aug 15;103(6):1095-102 - PubMed
  9. Microb Cell Fact. 2006 Feb 24;5:8 - PubMed
  10. J Bacteriol. 2005 Feb;187(3):1074-90 - PubMed
  11. Sensors (Basel). 2007 Dec 20;7(12 ):3472-3480 - PubMed
  12. Appl Environ Microbiol. 1994 Nov;60(11):3952-8 - PubMed
  13. J Biotechnol. 1992 May;23(3):291-301 - PubMed
  14. Annu Rev Microbiol. 2003;57:155-76 - PubMed
  15. Biochem Eng J. 2001 Mar;7(2):163-170 - PubMed
  16. Metabolites. 2013 Dec 30;4(1):1-35 - PubMed
  17. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7030-4 - PubMed
  18. Protein Expr Purif. 2010 Feb;69(2):137-46 - PubMed
  19. Biochem Eng J. 2001 Mar;7(2):91-98 - PubMed
  20. Appl Environ Microbiol. 1990 Apr;56(4):1004-11 - PubMed
  21. Biotechnol Bioeng. 2001 May 5;73(3):223-30 - PubMed
  22. Biotechnol Bioeng. 2001 Apr 20;73(2):95-103 - PubMed
  23. Trends Biotechnol. 1996 Mar;14(3):98-105 - PubMed
  24. Microb Cell Fact. 2011 Dec 12;10:107 - PubMed
  25. Biotechnol Bioeng. 1995 Sep 20;47(6):651-65 - PubMed
  26. Biotechnol Bioeng. 1992 Mar 15;39(6):663-71 - PubMed
  27. PLoS One. 2011 Jan 25;6(1):e16362 - PubMed
  28. Biotechnol Adv. 2005 Jul;23(5):345-57 - PubMed
  29. Biotechnol Bioeng. 1990 Feb 5;35(3):312-9 - PubMed
  30. Microb Cell Fact. 2008 Aug 07;7:26 - PubMed
  31. Physiology (Bethesda). 2006 Dec;21:419-29 - PubMed
  32. Biotechnol Prog. 2016 Nov;32(6):1418-1425 - PubMed
  33. Microb Cell Fact. 2017 Jul 17;16(1):122 - PubMed
  34. Int J Food Microbiol. 1994 Nov;23(3-4):295-303 - PubMed
  35. BMC Biotechnol. 2011 Mar 23;11:25 - PubMed
  36. J Gen Microbiol. 1989 Nov;135(11):2875-83 - PubMed
  37. Microb Cell Fact. 2014 Nov 07;13:149 - PubMed
  38. J Ind Microbiol Biotechnol. 2014 Apr;41(4):647-55 - PubMed
  39. Biotechnol Adv. 1986;4(2):207-18 - PubMed
  40. Trends Biochem Sci. 1998 Apr;23(4):143-8 - PubMed
  41. Microb Cell Fact. 2016 Jun 17;15(1):110 - PubMed
  42. Nature. 2015 Dec 3;528(7580):99-104 - PubMed
  43. Curr Opin Biotechnol. 1991 Jun;2(3):380-4 - PubMed

Substances

MeSH terms

Publication Types