Display options
Share it on

Sci Rep. 2018 May 16;8(1):7736. doi: 10.1038/s41598-018-25937-0.

Chemical fingerprints of cold physical plasmas - an experimental and computational study using cysteine as tracer compound.

Scientific reports

J-W Lackmann, K Wende, C Verlackt, J Golda, J Volzke, F Kogelheide, J Held, S Bekeschus, A Bogaerts, V Schulz-von der Gathen, K Stapelmann

Affiliations

  1. Biomedical Applications of Plasma Technology, Ruhr University Bochum, Universitätsstr 150, 44780, Bochum, Germany. [email protected].
  2. ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany. [email protected].
  3. ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany. [email protected].
  4. PLASMANT, University of Antwerp, Universiteitsplein 1, 2610, Antwerp-Wilrijk, Belgium.
  5. Experimental Physics II, Ruhr University Bochum, Universitätsstr 150, 44780, Bochum, Germany.
  6. ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
  7. Biomedical Applications of Plasma Technology, Ruhr University Bochum, Universitätsstr 150, 44780, Bochum, Germany.
  8. Department of Nuclear Engineering, Plasma for Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA.

PMID: 29769633 PMCID: PMC5955931 DOI: 10.1038/s41598-018-25937-0

Abstract

Reactive oxygen and nitrogen species released by cold physical plasma are being proposed as effectors in various clinical conditions connected to inflammatory processes. As these plasmas can be tailored in a wide range, models to compare and control their biochemical footprint are desired to infer on the molecular mechanisms underlying the observed effects and to enable the discrimination between different plasma sources. Here, an improved model to trace short-lived reactive species is presented. Using FTIR, high-resolution mass spectrometry, and molecular dynamics computational simulation, covalent modifications of cysteine treated with different plasmas were deciphered and the respective product pattern used to generate a fingerprint of each plasma source. Such, our experimental model allows a fast and reliable grading of the chemical potential of plasmas used for medical purposes. Major reaction products were identified to be cysteine sulfonic acid, cystine, and cysteine fragments. Less-abundant products, such as oxidized cystine derivatives or S-nitrosylated cysteines, were unique to different plasma sources or operating conditions. The data collected point at hydroxyl radicals, atomic O, and singlet oxygen as major contributing species that enable an impact on cellular thiol groups when applying cold plasma in vitro or in vivo.

References

  1. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16958-63 - PubMed
  2. Curr Opin Cell Biol. 2015 Apr;33:8-13 - PubMed
  3. Antioxid Redox Signal. 2012 Oct 1;17(7):962-8 - PubMed
  4. Biointerphases. 2015 Jun 06;10(2):029518 - PubMed
  5. PLoS Genet. 2016 Jan 25;12(1):e1005800 - PubMed
  6. Redox Biol. 2013;1(1):40-44 - PubMed
  7. Cell Signal. 2012 May;24(5):981-90 - PubMed
  8. J Craniomaxillofac Surg. 2016 Sep;44(9):1445-52 - PubMed
  9. Sci Rep. 2015 Dec 17;5:18339 - PubMed
  10. Amino Acids. 2012 Jan;42(1):231-46 - PubMed
  11. PLoS One. 2013 Dec 18;8(12):e81576 - PubMed
  12. J Biol Chem. 2015 Mar 13;290(11):6731-50 - PubMed
  13. Antioxidants (Basel). 2017 May 23;6(2): - PubMed
  14. Sci Rep. 2016 May 13;6:26016 - PubMed
  15. J Wound Care. 2015 May;24(5):196, 198-200, 202-3 - PubMed
  16. Exp Dermatol. 2017 Feb;26(2):156-162 - PubMed
  17. Cell Biol Int. 2014 Apr;38(4):412-25 - PubMed
  18. Sci Rep. 2016 Feb 23;6:19144 - PubMed
  19. Chem Res Toxicol. 1993 Jan-Feb;6(1):23-7 - PubMed
  20. Free Radic Res. 2006 Dec;40(12):1250-8 - PubMed
  21. Chem Sci. 2016 Jan 1;7(1):489-498 - PubMed
  22. J Biol Chem. 1995 Nov 24;270(47):28158-64 - PubMed
  23. Br J Dermatol. 2004 Nov;151(5):977-83 - PubMed
  24. Antioxid Redox Signal. 2011 Mar 15;14(6):1065-77 - PubMed
  25. Microvasc Res. 2016 Jul;106:8-13 - PubMed
  26. Sci Rep. 2017 Jun 5;7(1):2791 - PubMed
  27. Photochem Photobiol. 1994 Mar;59(3):284-9 - PubMed
  28. J Pharm Sci. 2005 Feb;94(2):304-16 - PubMed
  29. J Eur Acad Dermatol Venereol. 2013 Mar;27(3):324-31 - PubMed
  30. Free Radic Biol Med. 2014 Dec;77:64-70 - PubMed
  31. Appl Microbiol Biotechnol. 2014;98(14):6205-13 - PubMed
  32. Nat Rev Mol Cell Biol. 2014 Jun;15(6):411-21 - PubMed
  33. Annu Rev Biochem. 2015;84:765-90 - PubMed
  34. PLoS One. 2014 May 05;9(5):e94228 - PubMed
  35. Free Radic Biol Med. 1999 Aug;27(3-4):322-8 - PubMed

Publication Types