Display options
Share it on

Sci Rep. 2018 Apr 23;8(1):6416. doi: 10.1038/s41598-018-24742-z.

Finite-time quantum entanglement in propagating squeezed microwaves.

Scientific reports

K G Fedorov, S Pogorzalek, U Las Heras, M Sanz, P Yard, P Eder, M Fischer, J Goetz, E Xie, K Inomata, Y Nakamura, R Di Candia, E Solano, A Marx, F Deppe, R Gross

Affiliations

  1. Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, D-85748, Garching, Germany. [email protected].
  2. Physik-Department, Technische Universität München, D-85748, Garching, Germany. [email protected].
  3. Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, D-85748, Garching, Germany.
  4. Physik-Department, Technische Universität München, D-85748, Garching, Germany.
  5. Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080, Bilbao, Spain.
  6. Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799, München, Germany.
  7. RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan.
  8. National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan.
  9. Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan.
  10. Freie Universität Berlin, Institut für Theoretische Physik, Arnimallee 14, 14195, Berlin, Germany.
  11. IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
  12. Department of Physics, Shanghai University, 200444, Shanghai, China.
  13. Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, D-85748, Garching, Germany. [email protected].
  14. Physik-Department, Technische Universität München, D-85748, Garching, Germany. [email protected].
  15. Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799, München, Germany. [email protected].

PMID: 29686396 PMCID: PMC5913304 DOI: 10.1038/s41598-018-24742-z

Abstract

Two-mode squeezing is a fascinating example of quantum entanglement manifested in cross-correlations of non-commuting observables between two subsystems. At the same time, these subsystems themselves may contain no quantum signatures in their self-correlations. These properties make two-mode squeezed (TMS) states an ideal resource for applications in quantum communication. Here, we generate propagating microwave TMS states by a beam splitter distributing single mode squeezing emitted from distinct Josephson parametric amplifiers along two output paths. We experimentally study the fundamental dephasing process of quantum cross-correlations in continuous-variable propagating TMS microwave states and accurately describe it with a theory model. In this way, we gain the insight into finite-time entanglement limits and predict high fidelities for benchmark quantum communication protocols such as remote state preparation and quantum teleportation.

References

  1. Phys Rev Lett. 2016 Jul 8;117(2):020502 - PubMed
  2. Phys Rev Lett. 2015 Mar 20;114(11):110506 - PubMed
  3. Phys Rev Lett. 2011 Jun 3;106(22):220502 - PubMed
  4. Phys Rev Lett. 2017 Feb 17;118(7):070803 - PubMed
  5. Phys Rev Lett. 2012 Nov 2;109(18):183901 - PubMed
  6. Science. 2013 Mar 8;339(6124):1169-74 - PubMed
  7. Nat Commun. 2012;3:1083 - PubMed
  8. Phys Rev Lett. 2010 Sep 3;105(10):100401 - PubMed
  9. Phys Rev Lett. 2017 Mar 10;118(10 ):103602 - PubMed
  10. Science. 2008 Sep 12;321(5895):1463-5 - PubMed
  11. Sci Rep. 2017 Aug 24;7(1):9333 - PubMed
  12. Phys Rev Lett. 2015 Feb 27;114(8):080503 - PubMed
  13. Phys Rev Lett. 2011 Sep 9;107(11):113601 - PubMed
  14. Phys Rev Lett. 2012 Dec 21;109(25):250502 - PubMed
  15. Nat Commun. 2016 Dec 14;7:13795 - PubMed
  16. Phys Rev Lett. 2007 Apr 13;98(15):153603 - PubMed
  17. Science. 1998 Oct 23;282(5389):706-9 - PubMed

Publication Types