Display options
Share it on

Korean J Pain. 2018 Apr;31(2):73-79. doi: 10.3344/kjp.2018.31.2.73. Epub 2018 Apr 02.

Can oliceridine (TRV130), an ideal novel µ receptor G protein pathway selective (µ-GPS) modulator, provide analgesia without opioid-related adverse reactions?.

The Korean journal of pain

Hwoe Gyeong Ok, Su Young Kim, Su Jung Lee, Tae Kyun Kim, Billy K Huh, Kyung Hoon Kim

Affiliations

  1. Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea.
  2. Department of Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.

PMID: 29686804 PMCID: PMC5904350 DOI: 10.3344/kjp.2018.31.2.73

Abstract

All drugs have both favorable therapeutic and untoward adverse effects. Conventional opioid analgesics possess both analgesia and adverse reactions, such as nausea, vomiting, and respiratory depression. The opioid ligand binds to µ opioid receptor and non-selectively activates two intracellular signaling pathways: the G protein pathway induce analgesia, while the β-arrestin pathway is responsible for the opioid-related adverse reactions. An ideal opioid should activate the G protein pathway while deactivating the β-arrestin pathway. Oliceridine (TRV130) has a novel characteristic mechanism on the action of the µ receptor G protein pathway selective (µ-GPS) modulation. Even though adverse reactions (ADRs) are significantly attenuated, while the analgesic effect is augmented, the some residual ADRs persist. Consequently, a G protein biased µ opioid ligand, oliceridine, improves the therapeutic index owing to increased analgesia with decreased adverse events. This review article provides a brief history, mechanism of action, pharmacokinetics, pharmacodynamics, and ADRs of oliceridine.

Keywords: Adverse drug reactions; Beta-arrestin 2; G protein-coupled receptors; Intracellular signaling peptides and proteins; Knockout mice; Ligands; Mu opioid receptor; Oliceridine; Opioid analgesics; Patient safety

References

  1. Mol Pharmacol. 2003 Jun;63(6):1256-72 - PubMed
  2. Science. 1999 Dec 24;286(5449):2495-8 - PubMed
  3. J Pharmacol Exp Ther. 2005 Sep;314(3):1195-201 - PubMed
  4. Trends Mol Med. 2011 Mar;17 (3):126-39 - PubMed
  5. Cell Mol Life Sci. 2005 Mar;62(5):551-77 - PubMed
  6. ChemMedChem. 2006 Aug;1(8):761-82 - PubMed
  7. Front Pharmacol. 2014 Dec 18;5:280 - PubMed
  8. Nature. 2000 Dec 7;408(6813):720-3 - PubMed
  9. Drugs. 2014 Mar;74(3):353-75 - PubMed
  10. ACS Chem Neurosci. 2017 Aug 16;8(8):1638-1640 - PubMed
  11. Pain Physician. 2011 May-Jun;14(3):249-58 - PubMed
  12. Drug Discov Today. 2017 Nov;22(11):1719-1729 - PubMed
  13. Nature. 2016 Sep 8;537(7619):185-190 - PubMed
  14. J Clin Pharmacol. 2014 Mar;54(3):351-7 - PubMed
  15. Pain Physician. 2008 Mar;11(2 Suppl):S121-32 - PubMed
  16. Nat Rev Mol Cell Biol. 2002 Sep;3(9):639-50 - PubMed
  17. Curr Opin Pharmacol. 2017 Feb;32:77-84 - PubMed
  18. Br J Pharmacol. 2012 Mar;165(6):1704-1716 - PubMed
  19. Trends Pharmacol Sci. 2017 Jul;38(7):621-636 - PubMed
  20. Pain. 2016 Jan;157(1):264-72 - PubMed
  21. Pharmacol Rev. 2013 Jan 15;65(1):223-54 - PubMed
  22. J Clin Pharmacol. 2018 Feb 7;:null - PubMed
  23. CMAJ. 2002 Nov 12;167(10):1131-7 - PubMed
  24. Pain. 2014 Sep;155(9):1829-35 - PubMed
  25. Clin Drug Investig. 2015 Jan;35(1):1-11 - PubMed
  26. Postepy Hig Med Dosw (Online). 2014 Oct 31;68:1225-37 - PubMed
  27. Pharmacol Rev. 2004 Sep;56(3):371-85 - PubMed
  28. Trends Pharmacol Sci. 2014 Jul;35(7):308-16 - PubMed
  29. Gen Comp Endocrinol. 2005 May 15;142(1-2):94-101 - PubMed
  30. J Med Chem. 2013 Oct 24;56(20):8019-31 - PubMed

Publication Types