Display options
Share it on

BMC Syst Biol. 2018 Apr 24;12:41. doi: 10.1186/s12918-018-0567-9.

PPI network analyses of human WD40 protein family systematically reveal their tendency to assemble complexes and facilitate the complex predictions.

BMC systems biology

Xu-Dong Zou, Ke An, Yun-Dong Wu, Zhi-Qiang Ye

Affiliations

  1. Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
  2. Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China. [email protected].
  3. College of Chemistry, Peking University, Beijing, 100871, People's Republic of China. [email protected].
  4. Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China. [email protected].

PMID: 29745845 PMCID: PMC5998875 DOI: 10.1186/s12918-018-0567-9

Abstract

BACKGROUND: WD40 repeat proteins constitute one of the largest families in eukaryotes, and widely participate in various fundamental cellular processes by interacting with other molecules. Based on individual WD40 proteins, previous work has demonstrated that their structural characteristics should confer great potential of interaction and complex formation, and has speculated that they may serve as hubs in the protein-protein interaction (PPI) network. However, what roles the whole family plays in organizing the PPI network, and whether this information can be utilized in complex prediction remain unclear. To address these issues, quantitative and systematic analyses of WD40 proteins from the perspective of PPI networks are highly required.

RESULTS: In this work, we built two human PPI networks by using data sets with different confidence levels, and studied the network properties of the whole human WD40 protein family systematically. Our analyses have quantitatively confirmed that the human WD40 protein family, as a whole, tends to be hubs with an odds ratio of about 1.8 or greater, and the network decomposition has revealed that they are prone to enrich near the global center of the whole network with a fold change of two in the median k-values. By integrating expression profiles, we have further shown that WD40 hub proteins are inclined to be intramodular, which is indicative of complex assembling. Based on this information, we have further predicted 1674 potential WD40-associated complexes by choosing a clique-based method, which is more sensitive than others, and an indirect evaluation by co-expression scores has demonstrated its reliability.

CONCLUSIONS: At the systems level but not sporadic examples' level, this work has provided rich knowledge for better understanding WD40 proteins' roles in organizing the PPI network. These findings and predicted complexes can offer valuable clues for prioritizing candidates for further studies.

References

  1. Cell. 2006 Dec 1;127(5):929-40 - PubMed
  2. Bioinformatics. 2009 Feb 15;25(4):555-6 - PubMed
  3. Database (Oxford). 2011 Jan 12;2011:baq037 - PubMed
  4. Genome Res. 2008 Apr;18(4):644-52 - PubMed
  5. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 - PubMed
  6. Sci Rep. 2017 Sep 6;7(1):10585 - PubMed
  7. Subcell Biochem. 2008;48:124-35 - PubMed
  8. Proteomics. 2005 Feb;5(2):444-9 - PubMed
  9. Nat Rev Genet. 2004 Feb;5(2):101-13 - PubMed
  10. Cell. 2015 Jul 16;162(2):425-440 - PubMed
  11. Nature. 2004 Jul 1;430(6995):88-93 - PubMed
  12. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4419-24 - PubMed
  13. Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169 - PubMed
  14. Nature. 2003 Nov 6;426(6962):87-91 - PubMed
  15. Trends Biochem Sci. 2010 Oct;35(10):565-74 - PubMed
  16. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9 - PubMed
  17. Mol Cell Biol. 2005 May;25(9):3842-53 - PubMed
  18. FEBS Lett. 2002 Feb 20;513(1):135-40 - PubMed
  19. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  20. Genome Inform. 2005;16(2):260-9 - PubMed
  21. Nat Methods. 2012 Mar 18;9(5):471-2 - PubMed
  22. J Cell Biol. 2006 Feb 13;172(4):505-15 - PubMed
  23. Nat Cell Biol. 2006 Sep;8(9):994-1002 - PubMed
  24. Plant Cell. 2014 Jan;26(1):465-84 - PubMed
  25. Nucleic Acids Res. 2015 Jan;43(Database issue):D234-9 - PubMed
  26. Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50 - PubMed
  27. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D449-51 - PubMed
  28. Bioinformatics. 2006 Apr 15;22(8):1021-3 - PubMed
  29. Bioinformatics. 2006 Dec 15;22(24):3106-8 - PubMed
  30. J Biomed Biotechnol. 2005 Jun 30;2005(2):96-103 - PubMed
  31. Nucleic Acids Res. 2009 Jan;37(Database issue):D767-72 - PubMed
  32. BMC Bioinformatics. 2003 Jan 13;4:2 - PubMed
  33. Nature. 2001 May 3;411(6833):41-2 - PubMed
  34. Nucleic Acids Res. 2017 Jan 4;45(D1):D408-D414 - PubMed
  35. Nat Rev Drug Discov. 2014 Dec;13(12 ):889-903 - PubMed
  36. Structure. 2008 Jul;16(7):1086-94 - PubMed
  37. Mol Cell Proteomics. 2014 Feb;13(2):397-406 - PubMed
  38. Genes Dev. 2006 Nov 1;20(21):2949-54 - PubMed
  39. Science. 2008 Oct 3;322(5898):104-10 - PubMed
  40. Nucleic Acids Res. 2012 Jan;40(Database issue):D841-6 - PubMed
  41. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12123-8 - PubMed
  42. PLoS One. 2012;7(8):e43005 - PubMed
  43. Cell. 1996 Nov 1;87(3):577-88 - PubMed
  44. Nat Rev Mol Cell Biol. 2004 Sep;5(9):739-51 - PubMed
  45. Trends Cell Biol. 2010 Jul;20(7):391-401 - PubMed
  46. J Genomics. 2015 Feb 05;3:40-50 - PubMed
  47. Nat Biotechnol. 2009 Feb;27(2):199-204 - PubMed
  48. Bioinformatics. 2005 Mar;21(6):832-4 - PubMed
  49. Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 - PubMed
  50. EMBO J. 1997 Jul 16;16(14):4311-6 - PubMed
  51. Genome Biol. 2015 Oct 01;16:202 - PubMed
  52. Bioinformatics. 2009 Aug 1;25(15):1891-7 - PubMed
  53. J Cell Biol. 1993 Sep;122(6):1301-10 - PubMed
  54. Mol Cell Proteomics. 2007 Mar;6(3):439-50 - PubMed
  55. EMBO Rep. 2009 Sep;10(9):990-6 - PubMed
  56. Protein Cell. 2011 Mar;2(3):202-14 - PubMed
  57. Science. 2010 Apr 30;328(5978):593-9 - PubMed
  58. Mol Cell. 2006 Jun 9;22(5):645-55 - PubMed
  59. PLoS One. 2012;7(2):e31826 - PubMed
  60. Nucleic Acids Res. 2015 Jan;43(Database issue):D339-44 - PubMed
  61. Nature. 2014 May 29;509(7502):575-81 - PubMed
  62. Mol Cell. 2007 Apr 13;26(1):131-43 - PubMed
  63. Sci Rep. 2016 Dec 19;6:39262 - PubMed
  64. PLoS One. 2013 Aug 22;8(8):e73137 - PubMed
  65. Proteomics. 2004 Apr;4(4):928-42 - PubMed
  66. Nature. 1994 Sep 22;371(6495):297-300 - PubMed

MeSH terms

Publication Types