Display options
Share it on

Ecol Evol. 2018 Mar 31;8(8):4183-4196. doi: 10.1002/ece3.3920. eCollection 2018 Apr.

An in vitro evaluation of browser and grazer fermentation efficiency and microbiota using European moose spring and summer foods.

Ecology and evolution

Sophie J Krizsan, Alejandro Mateos-Rivera, Stefan Bertilsson, Annika Felton, Anne Anttila, Mohammad Ramin, Merko Vaga, Helena Gidlund, Pekka Huhtanen

Affiliations

  1. Department of Agricultural Research for Northern Sweden Swedish University of Agricultural Sciences Umeå Sweden.
  2. Limnology and Science for Life Laboratory Department of Ecology and Genetics Uppsala University Uppsala Sweden.
  3. Present address: Department of Science and Technology Høgskulen i Sogn og Fjordane Sogndal Norway.
  4. Department of Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Alnarp Sweden.
  5. Department of Agricultural Sciences Helsinki University Helsinki Finland.

PMID: 29721290 PMCID: PMC5916270 DOI: 10.1002/ece3.3920

Abstract

Evolutionary morphological and physiological differences between browsers and grazers contribute to species-specific digestion efficiency of food resources. Rumen microbial community structure of browsers is supposedly adapted to characteristic nutrient composition of the diet source. If this assumption is correct, domesticated ruminants, or grazers, are poor model animals for assessing the nutritional value of food consumed by browsing game species. In this study, typical spring and summer foods of the European moose (

Keywords: bacterial community composition; browser; digestion efficiency; feed evaluation; grazer; in vitro system; methane; microbiota

References

  1. PLoS One. 2016 Mar 17;11(3):e0150870 - PubMed
  2. Microb Genom. 2015 Oct 30;1(4):e000034 - PubMed
  3. Comp Biochem Physiol A Mol Integr Physiol. 2002 Nov;133(3):849-59 - PubMed
  4. J Anim Sci. 1995 Aug;73(8):2483-92 - PubMed
  5. PLoS One. 2012;7(3):e33306 - PubMed
  6. J Anim Sci. 2012 Sep;90(9):3162-73 - PubMed
  7. Bioinform Biol Insights. 2014 Jun 08;8:109-25 - PubMed
  8. Oecologia. 1994 Aug;98 (3-4):274-279 - PubMed
  9. Genomics Proteomics Bioinformatics. 2015 Jun;13(3):148-58 - PubMed
  10. ISME J. 2013 Jun;7(6):1069-79 - PubMed
  11. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53 - PubMed
  12. Comp Biochem Physiol A Mol Integr Physiol. 2015 Jul;185:58-68 - PubMed
  13. Sci Rep. 2015 Oct 09;5:14567 - PubMed
  14. Br J Nutr. 1995 Jun;73(6):897-913 - PubMed
  15. J Morphol. 2008 Feb;269(2):240-57 - PubMed
  16. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 - PubMed
  17. Oecologia. 1989 Mar;78(4):443-457 - PubMed
  18. ISME J. 2011 Oct;5(10):1571-9 - PubMed
  19. Appl Environ Microbiol. 2011 Jun;77(11):3846-52 - PubMed
  20. Microb Biotechnol. 2016 Mar;9(2):257-68 - PubMed
  21. Oecologia. 2001 Nov;129(3):321-327 - PubMed
  22. Nature. 2010 Jul 15;466(7304):334-8 - PubMed
  23. J Appl Microbiol. 2009 Dec 1;107(6):1924-34 - PubMed
  24. J Anim Ecol. 2006 Sep;75(5):1110-8 - PubMed
  25. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  26. Comp Biochem Physiol A Mol Integr Physiol. 2015 Apr;182:22-6 - PubMed
  27. PLoS One. 2015 Feb 03;10(2):e0116955 - PubMed

Publication Types