Display options
Share it on

Oncoimmunology. 2018 Mar 29;7(5):e1389821. doi: 10.1080/2162402X.2017.1389821. eCollection 2018.

[No title available]

Oncoimmunology

Gabriela Vera-Lozada, Carolina Minnicelli, Priscilla Segges, Gustavo Stefanoff, Flavia Kristcevic, Joaquin Ezpeleta, Elizabeth Tapia, Gerald Niedobitek, Mário Henrique M Barros, Rocio Hassan

Affiliations

  1. Oncovirology Laboratory, Bone Marrow Transplantation Center (CEMO), Department of Clinical Analysis and Toxicology, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.
  2. Universidade Federal do Rio Grande do Norte (UFRN), Natal RN, Brazil.
  3. Coordination of Clinical Research, INCA, Rio de Janeiro, Brazil.
  4. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS), CONICET, Rosario, Argentina.
  5. Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany.

PMID: 29721365 PMCID: PMC5927538 DOI: 10.1080/2162402X.2017.1389821

Abstract

Interleukin-10 (IL10) is an immune regulatory cytokine. Single nucleotide polymorphisms (SNPs) in IL10 promoter have been associated with prognosis in adult classical Hodgkin lymphoma (cHL). We analyzed IL10 SNPs -1082 and -592 in respect of therapy response, gene expression and tumor microenvironment (TME) composition in 98 pediatric patients with cHL. As confirmatory results, we found that -1082AA/AG; -592CC genotypes and ATA haplotype were associated with unfavourable prognosis: Progression-free survival (PFS) was shorter in -1082AA+AG (72.2%) than in GG patients (100%) (P = 0.024), and in -592AA (50%) and AC (74.2%) vs. CC patients (87.0%) (P = 0.009). In multivariate analysis, the -592CC genotype and the ATA haplotype retained prognostic impact (HR: 0.41, 95% CI 0.2-0.86; P = 0.018, and HR: 3.06 95% CI 1.03-9.12; P = 0.044, respectively). Our analysis further led to some new observations, namely: (1) Low IL10 mRNA expression was associated with -1082GG genotype (P = 0.014); (2) IL10 promoter polymorphisms influence TME composition;-1082GG/-592CC carriers showed low numbers of infiltrating cells expressing MAF transcription factor (20 vs. 78 and 49 vs. 108 cells/mm

Keywords: MAF; Single Nucleotide Polymorphisms (SNP); cHL; macrophages; survival; tumor microenvironment

References

  1. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9465-70 - PubMed
  2. Pathobiology. 2010;77(6):301-8 - PubMed
  3. Blood. 2002 Jun 15;99(12):4283-97 - PubMed
  4. Int J Cancer. 2012 Sep 1;131(5):1142-52 - PubMed
  5. Blood Cancer J. 2015 Jul 31;5:e328 - PubMed
  6. J Exp Med. 1989 Dec 1;170(6):2081-95 - PubMed
  7. Hematol Oncol. 2017 Mar;35(1):69-78 - PubMed
  8. Cancer Res. 2001 Aug 15;61(16):6219-26 - PubMed
  9. Semin Immunopathol. 2013 Sep;35(5):585-600 - PubMed
  10. Nat Rev Immunol. 2010 Mar;10(3):170-81 - PubMed
  11. Genes Immun. 1999 Nov;1(2):151-5 - PubMed
  12. Altern Med Rev. 2003 Aug;8(3):223-46 - PubMed
  13. J Immunol. 2005 Mar 15;174(6):3484-92 - PubMed
  14. Methods. 1997 Jan;11(1):98-111 - PubMed
  15. J Immunol. 2005 Mar 1;174(5):2720-9 - PubMed
  16. Crit Rev Immunol. 2012;32(1):23-63 - PubMed
  17. Annu Rev Immunol. 2001;19:683-765 - PubMed
  18. Nat Protoc. 2008;3(6):1101-8 - PubMed
  19. Front Immunol. 2013 May 31;4:129 - PubMed
  20. Genes Immun. 2001 Jun;2(4):181-90 - PubMed
  21. J Pathol. 2010 Jul;221(3):248-63 - PubMed
  22. Hum Mol Genet. 2004 Aug 15;13(16):1755-62 - PubMed
  23. Cancer Immunol Immunother. 1998 Jul;46(5):239-44 - PubMed
  24. Eur Cytokine Netw. 2004 Apr-Jun;15(2):153-8 - PubMed
  25. Ann Oncol. 2007 Aug;18(8):1376-81 - PubMed
  26. Haematologica. 2011 Feb;96(2):186-9 - PubMed
  27. Oncologist. 2013;18(1):80-9 - PubMed
  28. Ann Oncol. 2012 Mar;23(3):736-42 - PubMed
  29. Eur J Immunogenet. 1997 Feb;24(1):1-8 - PubMed
  30. Immunogenetics. 1996;45(1):82-3 - PubMed
  31. J Immunol. 2009 May 15;182(10):6226-36 - PubMed
  32. Cancer Discov. 2017 Oct;7(10 ):1154-1167 - PubMed
  33. Genes Immun. 2002 Nov;3(7):407-13 - PubMed
  34. Liver Transpl. 2003 Feb;9(2):170-81 - PubMed
  35. Exp Mol Pathol. 2014 Dec;97(3):433-9 - PubMed
  36. PLoS One. 2013 Nov 15;8(11):e80908 - PubMed
  37. Haematologica. 2011 Feb;96(2):269-76 - PubMed
  38. Br J Haematol. 2014 Sep;166(6):875-90 - PubMed
  39. PLoS One. 2015 May 15;10(5):e0124531 - PubMed
  40. Hematol Oncol. 2011 Dec;29(4):190-5 - PubMed
  41. Rheumatology (Oxford). 2000 Nov;39(11):1180-8 - PubMed
  42. Cytokine. 2013 Nov;64(2):523-31 - PubMed
  43. Blood. 1996 Apr 1;87(7):2918-29 - PubMed
  44. J Infect Dis. 2001 Sep 15;184(6):777-80 - PubMed
  45. Leuk Lymphoma. 2008 Nov;49(11):2091-8 - PubMed
  46. Haematologica. 2001 Mar;86(3):274-81 - PubMed
  47. J Immunol. 2004 May 15;172(10):6427-34 - PubMed
  48. Genes Immun. 2004 Jun;5(4):246-55 - PubMed
  49. J Immunol. 2008 May 1;180(9):5771-7 - PubMed
  50. N Engl J Med. 2010 Mar 11;362(10):875-85 - PubMed
  51. Med Oncol. 2000 Feb;17(1):59-63 - PubMed
  52. Ann Hematol. 2000 Mar;79(3):110-3 - PubMed
  53. Arch Pathol Lab Med. 2011 Apr;135(4):483-9 - PubMed
  54. Nat Rev Cancer. 2009 Jan;9(1):15-27 - PubMed
  55. Leuk Res. 2009 Oct;33(10):1352-6 - PubMed
  56. J Clin Oncol. 2011 May 10;29(14):1812-26 - PubMed
  57. Blood. 1993 Oct 1;82(7):2169-74 - PubMed
  58. Genes Immun. 2010 Mar;11(2):181-7 - PubMed
  59. Leuk Lymphoma. 2012 Oct;53(10):1934-44 - PubMed

Publication Types