Display options
Share it on

J Inflamm Res. 2018 May 01;11:169-178. doi: 10.2147/JIR.S160573. eCollection 2018.

Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury.

Journal of inflammation research

Mario Menk, Jan Adriaan Graw, Clarissa von Haefen, Hendrik Steinkraus, Burkhard Lachmann, Claudia D Spies, David Schwaiberger

Affiliations

  1. Department of Anesthesiology and Operative Intensive Care Medicine, Charité - University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany.

PMID: 29750051 PMCID: PMC5935084 DOI: 10.2147/JIR.S160573

Abstract

PURPOSE: Although the role of the angiotensin II type 2 (AT2) receptor in acute lung injury is not yet completely understood, a protective role of this receptor subtype has been suggested. We hypothesized that, in a rodent model of acute lung injury, stimulation of the AT2 receptor with the direct agonist Compound 21 (C21) might have a beneficial effect on pulmonary inflammation and might improve pulmonary gas exchange.

MATERIALS AND METHODS: Male adult rats were divided into a treatment group that received pulmonary lavage followed by mechanical ventilation (LAV, n=9), a group receiving pulmonary lavage, mechanical ventilation, and direct stimulation of the AT2 receptor with C21 (LAV+C21, n=9), and a control group that received mechanical ventilation only (control, n=9). Arterial blood gas analysis was performed every 30 min throughout the 240-min observation period. Lung tissue and plasma samples were obtained at 240 min after the start of mechanical ventilation. Protein content and surface activity of bronchoalveolar lavage fluid were assessed and the wet/dry-weight ratio of lungs was determined. Transcriptional and translational regulation of pro- and antiinflammatory cytokines IL-1β, tumor necrosis factor-alpha, IL-6, IL-10, and IL-4 was determined in lungs and in plasma.

RESULTS: Pulmonary lavage led to a significant impairment of gas exchange, the formation of lung edema, and the induction of pulmonary inflammation. Protein content of lavage fluid was increased and contained washed-out surfactant. Direct AT2 receptor stimulation with C21 led to a significant inhibition of tumor necrosis factor-alpha and IL-6 expressions in the lungs, whereas the expressions of IL-1, IL-10, and IL-4 remained unchanged. During the 240-min observation period, AT2 receptor stimulation did not improve pulmonary gas exchange or lung edema.

CONCLUSION: In this rodent model of acute lung injury after repeated pulmonary lavage, AT2 receptor stimulation attenuates pulmonary inflammation but does not improve gas exchange.

Keywords: ARDS; AT2 receptor; Compound 21 (C21); acute lung injury; lung failure

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

References

  1. Crit Care Med. 2013 Nov;41(11):e334-43 - PubMed
  2. Cell Mol Life Sci. 2007 Aug;64(15):2006-12 - PubMed
  3. Anaesthesia. 2013 Feb;68(2):175-8 - PubMed
  4. N Engl J Med. 2006 Jun 15;354(24):2564-75 - PubMed
  5. Inflammation. 2015 Aug;38(4):1690-9 - PubMed
  6. Clin Exp Pharmacol Physiol. 2014 Oct;41(10):844-53 - PubMed
  7. Alcohol. 2010 Sep;44(6):495-506 - PubMed
  8. N Engl J Med. 2005 Oct 20;353(16):1685-93 - PubMed
  9. Am J Respir Crit Care Med. 2017 Apr 1;195(7):860-870 - PubMed
  10. Respir Res. 2006 Oct 11;7:125 - PubMed
  11. Anesth Analg. 2011 May;112(5):1139-46 - PubMed
  12. J Med Chem. 2004 Nov 18;47(24):5995-6008 - PubMed
  13. Crit Care Med. 2014 Feb;42(2):404-12 - PubMed
  14. N Engl J Med. 2013 Jun 6;368(23):2159-68 - PubMed
  15. Respir Care. 2014 Sep;59(9):1422-32 - PubMed
  16. Crit Care. 2006;10(2):R41 - PubMed
  17. Nature. 2005 Jul 7;436(7047):112-6 - PubMed
  18. Stroke. 2009 Apr;40(4):1482-9 - PubMed
  19. J Cardiovasc Dis Res. 2010 Jan;1(1):29-36 - PubMed
  20. Acta Anaesthesiol Scand. 1980 Jun;24(3):231-6 - PubMed
  21. Crit Care. 2009;13(6):R182 - PubMed
  22. Respir Med. 2009 Mar;103(3):463-70 - PubMed
  23. N Engl J Med. 2000 May 4;342(18):1301-8 - PubMed
  24. JAMA. 2016 Feb 23;315(8):788-800 - PubMed
  25. Br J Pharmacol. 2015 May;172(9):2219-31 - PubMed
  26. Exp Lung Res. 2015;41(8):466-76 - PubMed
  27. Chest. 1997 Jul;112(1):164-72 - PubMed
  28. Drug News Perspect. 2010 Mar;23(2):104-11 - PubMed
  29. Am J Physiol Heart Circ Physiol. 2015 Sep;309(5):H827-34 - PubMed
  30. Curr Opin Pharmacol. 2015 Apr;21:115-21 - PubMed
  31. J Mol Med (Berl). 2016 Aug;94(8):957-66 - PubMed
  32. J Clin Invest. 2012 Aug;122(8):2731-40 - PubMed
  33. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1661-3 - PubMed
  34. Am J Respir Crit Care Med. 2011 Sep 1;184(5):561-8 - PubMed
  35. Circulation. 2008 Dec 9;118(24):2523-32 - PubMed
  36. Hypertension. 2010 Apr;55(4):924-31 - PubMed
  37. J Immunol. 2015 Aug 15;195(4):1815-24 - PubMed
  38. N Engl J Med. 2014 Oct 30;371(18):1695-703 - PubMed
  39. Int J Biochem Cell Biol. 2003 Jun;35(6):881-900 - PubMed
  40. Mol Endocrinol. 2004 Mar;18(3):666-78 - PubMed
  41. Clin Chest Med. 1985 Sep;6(3):345-69 - PubMed
  42. Pflugers Arch. 2013 Jan;465(1):79-85 - PubMed

Publication Types