Display options
Share it on

Clin Endocrinol (Oxf). 2018 Aug;89(2):129-138. doi: 10.1111/cen.13724. Epub 2018 May 16.

Clinical associations of maternal thyroid function with foetal brain development: Epidemiological interpretation and overview of available evidence.

Clinical endocrinology

Tim I M Korevaar, Henning Tiemeier, Robin P Peeters

Affiliations

  1. Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, The Netherlands.
  2. Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands.

PMID: 29693263 DOI: 10.1111/cen.13724

Abstract

Thyroid hormone is an important regulator of early brain development, particularly during early stages of gestation during which foetal thyroid hormone availability depends on the maternal transfer of thyroid hormones. There is a wide range of experimental studies showing that low maternal thyroid hormone availability is associated with suboptimal brain development parameters. While few clinical studies have shown that overt maternal hypothyroidism is associated with lower child IQ, the question whether more subclinical changes in maternal thyroid function could also lead to suboptimal foetal brain development. In this review, we put the latter studies in perspective and discuss their interpretation from an epidemiological and clinical perspective. Furthermore, we extend this discussion to also include future perspective and identify important knowledge gaps in the field.

© 2018 John Wiley & Sons Ltd.

Keywords: autism; brain; intelligence quotient; pregnancy; thyroid

References

  1. Krassas GE, Poppe K, Glinoer D. Thyroid function and human reproductive health. Endocr Rev. 2010;31:702-755. - PubMed
  2. Power C, Kuh D, Morton S. From developmental origins of adult disease to life course research on adult disease and aging: insights from birth cohort studies. Annu Rev Public Health. 2013;34:7-28. - PubMed
  3. Attina TM, Hauser R, Sathyanarayana S, et al. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol. 2016;4:996-1003. - PubMed
  4. Demeneix B. Toxic cocktail: how chemical pollution is poisoning our brains. Oxford, UK: Oxford University Press; 2017. - PubMed
  5. Eayrs JT, Taylor SH. The effect of thyroid deficiency induced by methyl thiouracil on the maturation of the central nervous system. J Anat. 1951;85:350-358. - PubMed
  6. Eayrs JT. Thyroid hypofunction and the development of the central nervous system. Nature. 1953;172:403-404. - PubMed
  7. Eayrs JT. The cerebral cortex of normal and hypothyroid rats. Acta Anat (Basel). 1955;25:160-183. - PubMed
  8. Lavado-Autric R, Auso E, Garcia-Velasco JV, et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest. 2003;111:1073-1082. - PubMed
  9. Bernal J. Thyroid hormones and brain development. Vitam Horm. 2005;71:95-122. - PubMed
  10. Man EB, Jones WS. Thyroid function in human pregnancy. V. Incidence of maternal serum low butanol-extractable iodines and of normal gestational TBG and TBPA capacities; retardation of 8-month-old infants. Am J Obstet Gynecol. 1969;104:898-908. - PubMed
  11. Thorpe-Beeston JG, Nicolaides KH, Felton CV, Butler J, McGregor AM. Maturation of the secretion of thyroid hormone and thyroid-stimulating hormone in the fetus. N Engl J Med. 1991;324:532-536. - PubMed
  12. Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression dilution bias. BMJ. 2010;340:c2289. - PubMed
  13. Korevaar TI, Peeters RP. Letter to the Editor: methodological comments on the study by Negro et al. entitled “impact of levothyroxine in miscarriage and preterm delivery rates in first trimester thyroid antibody-positive women with TSH<2.5mIU/L”. J Clin Endocrinol Metab. 2016;101(11):L101-L102. - PubMed
  14. Korevaar TI, Nieboer D, Bisschop PH, et al. Risk factors and a clinical prediction model for low maternal thyroid function during early pregnancy: two population-based prospective cohort studies. Clin Endocrinol (Oxf). 2016;85:902-909. - PubMed
  15. Noten AM, Loomans EM, Vrijkotte TG, et al. Maternal hypothyroxinaemia in early pregnancy and school performance in 5-year-old offspring. Eur J Endocrinol. 2015;173:563-571. - PubMed
  16. Korevaar TI, Muetzel R, Medici M, et al. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study. Lancet Diabetes Endocrinol. 2016;4:35-43. - PubMed
  17. Hernandez A, Martinez ME, Fiering S, Galton VA, St GD. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest. 2006;116:476-484. - PubMed
  18. Hernandez A, Quignodon L, Martinez ME, Flamant F, St Germain DL. Type 3 deiodinase deficiency causes spatial and temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels. Endocrinology. 2010;151:5550-5558. - PubMed
  19. Peeters RP, Hernandez A, Ng L, et al. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor alpha1. Endocrinology. 2013;154:550-561. - PubMed
  20. Stohn JP, Martinez ME, Matoin K, et al. MCT8 deficiency in male mice mitigates the phenotypic abnormalities associated with the absence of a functional type 3 deiodinase. Endocrinology. 2016;157:3266-3277. - PubMed
  21. Tinnikov A, Nordstrom K, Thoren P, et al. Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J. 2002;21:5079-5087. - PubMed
  22. Itoh Y, Esaki T, Kaneshige M, et al. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone alpha or beta receptor gene. Proc Natl Acad Sci U S A. 2001;98:9913-9918. - PubMed
  23. Moran C, Chatterjee K. Resistance to thyroid hormone due to defective thyroid receptor alpha. Best Pract Res Clin Endocrinol Metab. 2015;29:647-657. - PubMed
  24. Devlin B, Daniels M, Roeder K. The heritability of IQ. Nature. 1997;388:468-471. - PubMed
  25. Batty GD, Deary IJ. Early life intelligence and adult health. BMJ. 2004;329:585-586. - PubMed
  26. Muir T, Zegarac M. Societal costs of exposure to toxic substances: economic and health costs of four case studies that are candidates for environmental causation. Environ Health Perspect. 2001;109(Suppl 6):885-903. - PubMed
  27. Bellanger M, Demeneix B, Grandjean P, Zoeller RT, Trasande L. Neurobehavioral deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015;100:1256-1266. - PubMed
  28. Man EB, Kydd DM, Peters JP. Butanol-extractable iodine of serum. J Clin Invest. 1951;30:531-538. - PubMed
  29. Man EB, Bondy PK. Clinical significance of serum butanol-extractable iodine. J Clin Endocrinol Metab. 1957;17:1373-1382. - PubMed
  30. Man EB, Holden RH, Jones WS. Thyroid function in human pregnancy. VII. Development and retardation of 4-year-old progeny of euthyroid and of hypothyroxinemic women. Am J Obstet Gynecol. 1971;109:12-19. - PubMed
  31. Man EB, Jones WS, Holden RH, Mellits ED. Thyroid function in human pregnancy. 8. Retardation of progeny aged 7 years; relationships to maternal age and maternal thyroid function. Am J Obstet Gynecol. 1971;111:905-916. - PubMed
  32. Pop VJ, Brouwers EP, Vader HL, Vulsma T, van Baar AL, de Vijlder JJ. Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study. Clin Endocrinol (Oxf). 2003;59:282-288. - PubMed
  33. Pop VJ, de Vries E, van Baar AL, et al. Maternal thyroid peroxidase antibodies during pregnancy: a marker of impaired child development? J Clin Endocrinol Metab. 1995;80:3561-3566. - PubMed
  34. Pop VJ, Kuijpens JL, van Baar AL, et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol (Oxf). 1999;50:149-155. - PubMed
  35. Haddow JE, Palomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341:549-555. - PubMed
  36. Oken E, Braverman LE, Platek D, Mitchell ML, Lee SL, Pearce EN. Neonatal thyroxine, maternal thyroid function, and child cognition. J Clin Endocrinol Metab. 2009;94:497-503. - PubMed
  37. Massolt ET, Effraimidis G, Korevaar TI, et al. Aberrant levels of hematopoietic/neuronal growth and differentiation factors in euthyroid women at risk for autoimmune thyroid disease. PLoS ONE. 2016;11:e0153892. - PubMed
  38. Henrichs J, Bongers-Schokking JJ, Schenk JJ, et al. Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the generation R study. J Clin Endocrinol Metab. 2010;95:4227-4234. - PubMed
  39. Julvez J, Alvarez-Pedrerol M, Rebagliato M, et al. Thyroxine levels during pregnancy in healthy women and early child neurodevelopment. Epidemiology. 2013;24:150-157. - PubMed
  40. Ghassabian A, El Marroun H, Peeters RP, et al. Downstream effects of maternal hypothyroxinemia in early pregnancy: nonverbal IQ and brain morphology in school-age children. J Clin Endocrinol Metab. 2014;99:2383-2390. - PubMed
  41. Lauder JM. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. III. Kinetics of cell proliferation in the external granular layer. Brain Res. 1977;126:31-51. - PubMed
  42. Nicholson JL, Altman J. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res. 1972;44:13-23. - PubMed
  43. Nicholson JL, Altman J. The effects of early hypo- and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res. 1972;44:25-36. - PubMed
  44. Pasquini JM, Adamo AM. Thyroid hormones and the central nervous system. Dev Neurosci. 1994;16:1-8. - PubMed
  45. Marta CB, Adamo AM, Soto EF, Pasquini JM. Sustained neonatal hyperthyroidism in the rat affects myelination in the central nervous system. J Neurosci Res. 1998;53:251-259. - PubMed
  46. Maraka S, Ospina NM, O'Keeffe DT, et al. Subclinical hypothyroidism in pregnancy: a systematic review and meta-analysis. Thyroid. 2016;26:580-590. - PubMed
  47. Lundstrom S, Chang Z, Kerekes N, et al. Autistic-like traits and their association with mental health problems in two nationwide twin cohorts of children and adults. Psychol Med. 2011;41:2423-2433. - PubMed
  48. Ronald A, Larsson H, Anckarsater H, Lichtenstein P. A twin study of autism symptoms in Sweden. Mol Psychiatry. 2011;16:1039-1047. - PubMed
  49. Lichtenstein P, Carlstrom E, Rastam M, Gillberg C, Anckarsater H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry. 2010;167:1357-1363. - PubMed
  50. Ronald A, Hoekstra RA. Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:255-274. - PubMed
  51. Torrico B, Chiocchetti AG, Bacchelli E, et al. Lack of replication of previous autism spectrum disorder GWAS hits in European populations. Autism Res. 2016;10:202-211. - PubMed
  52. Sullivan PF, Daly MJ, O'Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13:537-551. - PubMed
  53. Colvert E, Tick B, McEwen F, et al. Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry. 2015;72:415-423. - PubMed
  54. Weintraub K. The prevalence puzzle: Autism counts. Nature. 2011;479:22-24. - PubMed
  55. Reiner O, Karzbrun E, Kshirsagar A, Kaibuchi K. Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J Neurochem. 2016;136:440-456. - PubMed
  56. Roman GC, Ghassabian A, Bongers-Schokking JJ, et al. Association of gestational maternal hypothyroxinemia and increased autism risk. Ann Neurol. 2013;74:733-742. - PubMed
  57. Andersen SL, Olsen J. Early pregnancy thyroid function test abnormalities in biobank sera from women clinically diagnosed with thyroid dysfunction before or after pregnancy. Thyroid. 2017;27:451-459. - PubMed
  58. Ghassabian A, Bongers-Schokking JJ, de Rijke YB, et al. Maternal thyroid autoimmunity during pregnancy and the risk of attention deficit/hyperactivity problems in children: the Generation R Study. Thyroid. 2012;22:178-186. - PubMed
  59. Modesto T, Tiemeier H, Peeters RP, et al. Maternal mild thyroid hormone insufficiency in early pregnancy and attention-deficit/hyperactivity disorder symptoms in children. JAMA Pediatr. 2015;169:838-845. - PubMed
  60. Pakkila F, Mannisto T, Pouta A, et al. The impact of gestational thyroid hormone concentrations on ADHD symptoms of the child. J Clin Endocrinol Metab. 2014;99:E1-E8. - PubMed
  61. Vermiglio F, Lo Presti VP, Moleti M, et al. Attention deficit and hyperactivity disorders in the offspring of mothers exposed to mild-moderate iodine deficiency: a possible novel iodine deficiency disorder in developed countries. J Clin Endocrinol Metab. 2004;89:6054-6060. - PubMed
  62. Messias EL, Chen CY, Eaton WW. Epidemiology of schizophrenia: review of findings and myths. Psychiatr Clin North Am. 2007;30:323-338. - PubMed
  63. Rapoport JL, Giedd JN, Gogtay N. Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatr. 2012;17:1228-1238. - PubMed
  64. Gyllenberg D, Sourander A, Surcel HM, Hinkka-Yli-Salomaki S, McKeague IW, Brown AS. Hypothyroxinemia during gestation and offspring schizophrenia in a National Birth Cohort. Biol Psychiatry. 2016;79:962-970. - PubMed
  65. Lynn R, Mikk J. National differences in intelligence and educational attainment. Intelligence. 2007;35:115-121. - PubMed
  66. Ceci SJ. How much does schooling influence general intelligence and its cognitive components - a reassessment of the evidence. Dev Psychol. 1991;27:703-722. - PubMed
  67. Pakkila F, Mannisto T, Hartikainen AL, et al. Maternal and child's thyroid function and child's intellect and scholastic performance. Thyroid. 2015;25:1363-1374. - PubMed
  68. Korevaar TI, Chaker L, Jaddoe VW, Visser TJ, Medici M, Peeters RP. Maternal and birth characteristics are determinants of offspring thyroid function. J Clin Endocrinol Metab. 2016;101:206-213. - PubMed
  69. Lain SJ, Bentley JP, Wiley V, et al. Association between borderline neonatal thyroid-stimulating hormone concentrations and educational and developmental outcomes: a population-based record-linkage study. Lancet Diabetes Endocrinol. 2016;4:756-765. - PubMed
  70. Giedd JN, Raznahan A, Alexander-Bloch A, Schmitt E, Gogtay N, Rapoport JL. Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology. 2015;40:43-49. - PubMed
  71. Ecker C, Bookheimer SY, Murphy DG. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 2015;14:1121-1134. - PubMed
  72. van Erp TG, Hibar DP, Rasmussen JM, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016;21:547-553. - PubMed
  73. McAlonan GM, Cheung V, Cheung C, et al. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain. 2005;128:268-276. - PubMed
  74. Luders E, Narr KL, Thompson PM, Toga AW. Neuroanatomical correlates of intelligence. Intelligence. 2009;37:156-163. - PubMed
  75. Lischinsky JE, Skocic J, Clairman H, Rovet J. Preliminary findings show maternal hypothyroidism may contribute to abnormal cortical morphology in offspring. Front Endocrinol (Lausanne). 2016;7:16. - PubMed
  76. Samadi A, Skocic J, Rovet JF. Children born to women treated for hypothyroidism during pregnancy show abnormal corpus callosum development. Thyroid. 2015;25:494-502. - PubMed
  77. Willoughby KA, McAndrews MP, Rovet JF. Effects of maternal hypothyroidism on offspring hippocampus and memory. Thyroid. 2014;24:576-584. - PubMed
  78. Lazarus JH, Bestwick JP, Channon S, et al. Antenatal thyroid screening and childhood cognitive function. N Engl J Med. 2012;366:493-501. - PubMed
  79. Hales C, Channon S, Taylor PN, et al. The second wave of the controlled antenatal thyroid screening (CATS II) study: the cognitive assessment protocol. BMC Endocr Disord. 2014;14:95. - PubMed
  80. Hales C, Taylor PN, Channon S, et al. Controlled antenatal thyroid screening II: effect of treating maternal sub-optimal thyroid function on child cognition. J Clin Endocrinol Metab. 2018;103:1583-1591. - PubMed
  81. Casey BM, Thom EA, Peaceman AM, et al. Treatment of subclinical hypothyroidism or hypothyroxinemia in pregnancy. N Engl J Med. 2017;376:815-825. - PubMed
  82. Selvin S. Statistical analysis of epidemiologic data, 3rd edn. Oxford; New York: Oxford University Press; 2004. - PubMed
  83. Bath SC, Steer CD, Golding J, Emmett P, Rayman MP. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the avon longitudinal study of parents and children (ALSPAC). Lancet. 2013;382:331-337. - PubMed
  84. Braun JM, Yolton K, Dietrich KN, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect. 2009;117:1945-1952. - PubMed
  85. Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and childrens neurodevelopment: a systematic review. Environ Res. 2015;142:51-60. - PubMed
  86. Munoz-Quezada MT, Lucero BA, Barr DB, et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review. Neurotoxicology. 2013;39:158-168. - PubMed
  87. Rauh V, Arunajadai S, Horton M, et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect. 2011;119:1196-1201. - PubMed
  88. Leung AM, Korevaar TI, Peeters RP, et al. Exposure to thyroid-disrupting chemicals: a transatlantic call for action. Thyroid. 2016;26:479-480. - PubMed

Publication Types

Grant support