Display options
Share it on

Bioengineering (Basel). 2018 Apr 24;5(2). doi: 10.3390/bioengineering5020033.

Efficient Computational Design of a Scaffold for Cartilage Cell Regeneration.

Bioengineering (Basel, Switzerland)

Tannaz Tajsoleiman, Mohammad Jafar Abdekhodaie, Krist V Gernaey, Ulrich Krühne

Affiliations

  1. Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark. [email protected].
  2. Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran. [email protected].
  3. Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark. [email protected].
  4. Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark. [email protected].

PMID: 29695105 PMCID: PMC6027378 DOI: 10.3390/bioengineering5020033

Abstract

Due to the sensitivity of mammalian cell cultures, understanding the influence of operating conditions during a tissue generation procedure is crucial. In this regard, a detailed study of scaffold based cell culture under a perfusion flow is presented with the aid of mathematical modelling and computational fluid dynamics (CFD). With respect to the complexity of the case study, this work focuses solely on the effect of nutrient and metabolite concentrations, and the possible influence of fluid-induced shear stress on a targeted cell (cartilage) culture. The simulation set up gives the possibility of predicting the cell culture behavior under various operating conditions and scaffold designs. Thereby, the exploitation of the predictive simulation into a newly developed stochastic routine provides the opportunity of exploring improved scaffold geometry designs. This approach was applied on a common type of fibrous structure in order to increase the process efficiencies compared with the regular used formats. The suggested topology supplies a larger effective surface for cell attachment compared to the reference design while the level of shear stress is kept at the positive range of effect. Moreover, significant improvement of mass transfer is predicted for the suggested topology.

Keywords: CFD simulation; micro-bioreactor operating conditions; scaffold geometry optimization; tissue engineering

References

  1. Biotechnol Prog. 2002 Sep-Oct;18(5):951-63 - PubMed
  2. Spine (Phila Pa 1976). 2001 Dec 1;26(23):2543-9 - PubMed
  3. Tissue Eng. 2005 Sep-Oct;11(9-10):1297-311 - PubMed
  4. Biotechnol Bioeng. 2002 Mar 5;77(5):495-516 - PubMed
  5. Biotechnol Bioeng. 2007 Sep 1;98(1):282-94 - PubMed
  6. Spine (Phila Pa 1976). 2002 Oct 15;27(20):2220-8; discussion 2227-8 - PubMed
  7. Clin Orthop Relat Res. 2002 Sep;(402):21-37 - PubMed
  8. Ann Biomed Eng. 2010 Apr;38(4):1655-63 - PubMed
  9. Chem Biol. 1999 Jun;6(6):R157-66 - PubMed
  10. Biotechnol Bioeng. 2015 Dec;112(12):2601-10 - PubMed
  11. Biotechnol Rep (Amst). 2014 Dec 08;5:55-62 - PubMed
  12. Biomech Model Mechanobiol. 2006 Mar;5(1):1-16 - PubMed
  13. Virchows Arch A Pathol Anat Histol. 1980;389(2):167-87 - PubMed
  14. Biorheology. 2004;41(3-4):401-10 - PubMed
  15. Biotechnol Bioeng. 2008 Oct 1;101(2):408-21 - PubMed
  16. Biomech Model Mechanobiol. 2013 Nov;12(6):1169-79 - PubMed
  17. Biotechnol Prog. 2013 Mar-Apr;29(2):452-62 - PubMed
  18. Nat Mater. 2005 Jul;4(7):518-24 - PubMed
  19. J Biomech Eng. 2005 Oct;127(5):758-66 - PubMed
  20. Biotechnol Bioeng. 2007 Aug 15;97(6):1603-16 - PubMed
  21. Trends Biotechnol. 2008 Apr;26(4):166-72 - PubMed
  22. Biotechnol Bioeng. 1999 Oct 20;65(2):121-32 - PubMed
  23. Biotechnol Bioeng. 1994 Mar 25;43(7):597-604 - PubMed
  24. Biomech Model Mechanobiol. 2011 Jul;10(4):577-89 - PubMed
  25. Biotechnol Prog. 2000 Sep-Oct;16(5):893-6 - PubMed
  26. Biotechnol Bioeng. 1999 Sep 20;64(6):633-43 - PubMed
  27. Biotechnol Bioeng. 2006 Aug 20;94(6):1138-46 - PubMed
  28. Science. 2009 May 8;324(5928):797-801 - PubMed
  29. Biomaterials. 2011 Aug;32(22):5003-14 - PubMed
  30. Connect Tissue Res. 1974;2(2):127-36 - PubMed

Publication Types