Display options
Share it on

Front Microbiol. 2018 Apr 11;9:734. doi: 10.3389/fmicb.2018.00734. eCollection 2018.

Functional Resistance to Recurrent Spatially Heterogeneous Disturbances Is Facilitated by Increased Activity of Surviving Bacteria in a Virtual Ecosystem.

Frontiers in microbiology

Sara König, Anja Worrich, Thomas Banitz, Hauke Harms, Matthias Kästner, Anja Miltner, Lukas Y Wick, Karin Frank, Martin Thullner, Florian Centler

Affiliations

  1. Department of Ecological Modelling, The UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
  2. Department of Environmental Microbiology, The UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
  3. Institute of Environmental Systems Research, University of Osnabrück, Osnabrück, Germany.
  4. Department of Environmental Biotechnology, The UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
  5. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.

PMID: 29696013 PMCID: PMC5904252 DOI: 10.3389/fmicb.2018.00734

Abstract

Bacterial degradation of organic compounds is an important ecosystem function with relevance to, e.g., the cycling of elements or the degradation of organic contaminants. It remains an open question, however, to which extent ecosystems are able to maintain such biodegradation function under recurrent disturbances (functional resistance) and how this is related to the bacterial biomass abundance. In this paper, we use a numerical simulation approach to systematically analyze the dynamic response of a microbial population to recurrent disturbances of different spatial distribution. The spatially explicit model considers microbial degradation, growth, dispersal, and spatial networks that facilitate bacterial dispersal mimicking effects of mycelial networks in nature. We find: (i) There is a certain capacity for high resistance of biodegradation performance to recurrent disturbances. (ii) If this resistance capacity is exceeded, spatial zones of different biodegradation performance develop, ranging from no or reduced to even increased performance. (iii) Bacterial biomass and biodegradation dynamics respond inversely to the spatial fragmentation of disturbances: overall biodegradation performance improves with increasing fragmentation, but bacterial biomass declines. (iv) Bacterial dispersal networks can enhance functional resistance against recurrent disturbances, mainly by reactivating zones in the core of disturbed areas, even though this leads to an overall reduction of bacterial biomass.

Keywords: bacterial degradation; biomass distribution; ecological modeling; fragmentation; microbial ecosystem service; resilience; simulation model; stability

References

  1. Oecologia. 1997 Feb;109 (3):323-334 - PubMed
  2. Environ Sci Technol. 2007 Jan 15;41(2):500-5 - PubMed
  3. Crit Rev Microbiol. 2006;32(2):101-12 - PubMed
  4. Ecol Lett. 2005 May;8(5):548-57 - PubMed
  5. Biotechnol Bioeng. 2008 Apr 15;99(6):1337-51 - PubMed
  6. J Theor Biol. 2011 Oct 21;287:82-91 - PubMed
  7. Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9 - PubMed
  8. Environ Sci Technol. 2005 Jun 15;39(12 ):4640-6 - PubMed
  9. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12765-70 - PubMed
  10. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4047-52 - PubMed
  11. Sci Total Environ. 2014 Jan 1;466-467:699-705 - PubMed
  12. Microb Ecol. 2012 Feb;63(2):339-47 - PubMed
  13. FEMS Immunol Med Microbiol. 2012 Jul;65(2):183-95 - PubMed
  14. Glob Chang Biol. 2012 Oct;18(10 ):3252-3258 - PubMed
  15. Ecology. 2012 Apr;93(4):930-8 - PubMed
  16. PLoS One. 2011 Apr 29;6(4):e19525 - PubMed
  17. Environ Microbiol Rep. 2013 Apr;5(2):211-8 - PubMed
  18. Environ Pollut. 2011 Oct;159(10):2781-8 - PubMed
  19. Nat Commun. 2017 Mar 17;8:14855 - PubMed
  20. Environ Pollut. 2012 Apr;163:91-9 - PubMed
  21. Glob Chang Biol. 2016 Mar;22(3):1008-28 - PubMed
  22. Nat Commun. 2015 Feb 23;6:6238 - PubMed
  23. Environ Microbiol. 2010 Jun;12 (6):1391-8 - PubMed
  24. Am Nat. 2011 Aug;178(2):159-70 - PubMed
  25. Front Microbiol. 2017 Sep 25;8:1832 - PubMed
  26. Environ Sci Technol. 2016 Jun 21;50(12 ):6320-6 - PubMed
  27. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14307-12 - PubMed
  28. Front Microbiol. 2012 Dec 19;3:417 - PubMed
  29. FEMS Microbiol Ecol. 2014 Jan;87(1):78-88 - PubMed
  30. Appl Environ Microbiol. 2000 Sep;66(9):4058-67 - PubMed
  31. Front Microbiol. 2015 Feb 02;6:40 - PubMed
  32. Environ Pollut. 2013 Oct;181:122-7 - PubMed
  33. PLoS One. 2011;6(8):e22355 - PubMed
  34. FEMS Microbiol Ecol. 2010 Oct;74(1):72-82 - PubMed
  35. Ecol Lett. 2014 Jun;17(6):680-90 - PubMed
  36. FEMS Microbiol Ecol. 2015 Nov;91(11):null - PubMed
  37. Front Microbiol. 2016 Jan 05;6:1493 - PubMed
  38. Front Microbiol. 2016 Aug 03;7:1214 - PubMed
  39. Environ Microbiol. 2011 Jun;13(6):1477-87 - PubMed
  40. Microb Ecol. 2013 Jul;66(1):171-81 - PubMed
  41. FEMS Microbiol Rev. 2013 Mar;37(2):112-29 - PubMed
  42. PLoS One. 2012;7(5):e36959 - PubMed
  43. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3776-81 - PubMed
  44. J Contam Hydrol. 2010 Mar 1;112(1-4):130-40 - PubMed
  45. Environ Microbiol. 2012 Sep;14(9):2283-92 - PubMed
  46. Appl Microbiol Biotechnol. 2015 Nov;99(21):8831-46 - PubMed
  47. Environ Technol. 2005 Feb;26(2):155-60 - PubMed
  48. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17290-5 - PubMed
  49. Environ Microbiol. 2008 Aug;10(8):2184-7 - PubMed
  50. FEMS Microbiol Ecol. 2003 Dec 1;46(3):295-306 - PubMed
  51. Nat Commun. 2017 Jun 07;8:15472 - PubMed
  52. Trends Microbiol. 2006 May;14(5):213-9 - PubMed

Publication Types