Display options
Share it on

Mol Cytogenet. 2018 May 10;11:31. doi: 10.1186/s13039-018-0376-2. eCollection 2018.

Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems.

Molecular cytogenetics

Christine J Ye, Sarah Regan, Guo Liu, Sarah Alemara, Henry H Heng

Affiliations

  1. 1The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA.
  2. 2Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA.
  3. 3Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 USA.

PMID: 29760781 PMCID: PMC5946397 DOI: 10.1186/s13039-018-0376-2

Abstract

BACKGROUND: In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases.

RESULTS: Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system.

CONCLUSION: Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis encourages efforts to apply the principles/approaches of complex adaptive systems to ultimately understand aneuploidy in cancer.

Keywords: Adaptive system; Aneuploidy; Cancer evolution; Complexity; Emergence of new genome; Fuzzy inheritance; Genome theory; Non-clonal chromosome aberrations (NCCAs); Punctuated evolution; System inheritance

Conflict of interest statement

N/AThe authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. Am J Hum Genet. 1988 Oct;43(4):355-63 - PubMed
  2. Genes Dev. 2015 May 1;29(9):898-903 - PubMed
  3. Annu Rev Cell Dev Biol. 2012;28:189-214 - PubMed
  4. J Cell Biochem. 2006 Aug 15;98(6):1424-35 - PubMed
  5. J Cell Physiol. 2009 Sep;220(3):538-47 - PubMed
  6. Cytogenet Genome Res. 2013;139(3):141-3 - PubMed
  7. Hum Mol Genet. 2008 Apr 15;17(R1):R10-5 - PubMed
  8. Oncogene. 2010 Oct 7;29(40):5447-51 - PubMed
  9. Nat Rev Genet. 2006 Feb;7(2):85-97 - PubMed
  10. J Cell Physiol. 2009 May;219(2):288-300 - PubMed
  11. Cancer Res. 2016 Apr 15;76(8):2057-9 - PubMed
  12. Curr Genomics. 2008 Mar;9(1):43-50 - PubMed
  13. Cell Death Dis. 2011 Jun 30;2:e178 - PubMed
  14. Cancer Genet Cytogenet. 2002 Apr 1;134(1):65-70 - PubMed
  15. Mutat Res. 2000 Apr;462(2-3):247-53 - PubMed
  16. Genome. 2006 Mar;49(3):195-204 - PubMed
  17. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14506-11 - PubMed
  18. Int J Cancer. 2015 May 1;136(9):2012-21 - PubMed
  19. Recent Results Cancer Res. 1998;154:177-84 - PubMed
  20. Elife. 2017 Aug 25;6:null - PubMed
  21. Bioessays. 2009 May;31(5):512-25 - PubMed
  22. Cancer Cell. 2011 Jun 14;19(6):701-14 - PubMed
  23. PLoS Genet. 2012;8(5):e1002719 - PubMed
  24. Stem Cells. 1993 May;11(3):199-203 - PubMed
  25. Cancer Metastasis Rev. 2013 Dec;32(3-4):391-402 - PubMed
  26. Cancer Cell. 2017 Feb 13;31(2):240-255 - PubMed
  27. J Cell Biochem. 2010 Apr 15;109(6):1072-84 - PubMed
  28. Nature. 2014 Aug 14;512(7513):155-60 - PubMed
  29. Cytogenet Genome Res. 2007;118(2-4):237-46 - PubMed
  30. Science. 2015 Jan 2;347(6217):78-81 - PubMed
  31. Oncogene. 2014 Jan 2;33(1):116-28 - PubMed
  32. Science. 2017 Jan 20;355(6322):249-250 - PubMed
  33. Cancer Res. 2007 Aug 15;67(16):7686-94 - PubMed
  34. Trends Genet. 1999 Jun;15(6):241-7 - PubMed
  35. Syst Biol Reprod Med. 2013 Jun;59(3):124-30 - PubMed
  36. Cytogenet Genome Res. 2013;139(3):189-92 - PubMed
  37. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13361-6 - PubMed
  38. Curr Genomics. 2018 Apr;19(3):227-239 - PubMed
  39. PLoS One. 2007 Jun 27;2(6):e558 - PubMed
  40. Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):E972 - PubMed
  41. Cancer Res. 2005 Oct 1;65(19):8747-53 - PubMed
  42. Genome Biol. 2017 Nov 24;18(1):224 - PubMed
  43. Cytogenet Genome Res. 2013;139(3):215-22 - PubMed
  44. Curr Opin Cell Biol. 2010 Dec;22(6):809-15 - PubMed
  45. N Engl J Med. 2017 Jun 1;376(22):2109-2121 - PubMed
  46. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  47. Science. 2004 Jul 23;305(5683):525-8 - PubMed
  48. Nature. 1998 Dec 17;396(6712):643-9 - PubMed
  49. Cancer Cell. 2008 Dec 9;14(6):431-3 - PubMed
  50. Cancer Res. 2017 Jan 1;77(1):62-73 - PubMed
  51. Cytogenet Genome Res. 2013;139(3):144-57 - PubMed
  52. J Cell Biol. 2008 Feb 25;180(4):665-72 - PubMed
  53. Curr Opin Cell Biol. 2016 Jun;40:41-46 - PubMed
  54. Nat Rev Mol Cell Biol. 2015 Aug;16(8):473-85 - PubMed
  55. Adv Cancer Res. 2011;112:217-53 - PubMed
  56. Mutat Res. 1988 May;199(1):199-205 - PubMed
  57. Front Genet. 2014 Apr 23;5:92 - PubMed
  58. Nat Genet. 2004 Sep;36(9):949-51 - PubMed
  59. Nature. 2009 Jul 9;460(7252):278-82 - PubMed
  60. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12644-9 - PubMed
  61. Anticancer Res. 1999 Nov-Dec;19(6A):4887-906 - PubMed
  62. Hereditas. 1983;98(1):1-9 - PubMed
  63. Nat Genet. 2004 Nov;36(11):1159-61 - PubMed
  64. Nature. 2016 Oct 20;538(7625):378-382 - PubMed
  65. Cell Div. 2015 May 20;10:3 - PubMed
  66. Nat Rev Genet. 2010 Jun;11(6):446-50 - PubMed
  67. Genetics. 2009 Jan;181(1):3-12 - PubMed
  68. Cell Motil Cytoskeleton. 2000 Oct;47(2):81-107 - PubMed
  69. Int J Cancer. 2014 May 1;134(9):2074-87 - PubMed
  70. Science. 2007 Aug 17;317(5840):916-24 - PubMed
  71. Science. 2011 Aug 19;333(6045):1026-30 - PubMed
  72. Curr Genomics. 2010 Sep;11(6):379-86 - PubMed
  73. J Cell Sci. 1974 Oct;16(1):189-98 - PubMed
  74. Cancer Epidemiol Biomarkers Prev. 2005 Mar;14(3):748-52 - PubMed
  75. Mol Cytogenet. 2013 Oct 31;6:46 - PubMed
  76. Evolution. 2011 Apr;65(4):1088-98 - PubMed
  77. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13692-7 - PubMed
  78. Methods Mol Biol. 2018;1769:337-352 - PubMed
  79. JAMA. 2008 Oct 1;300(13):1580-1 - PubMed
  80. Mutagenesis. 1999 Nov;14(6):563-8 - PubMed
  81. J Assist Reprod Genet. 2017 Jan;34(1):15-21 - PubMed
  82. Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14793-14798 - PubMed
  83. Sci Am. 2003 Jul;289(1):56-65 - PubMed
  84. Bioessays. 2018 Jan;40(1):null - PubMed
  85. Pediatr Blood Cancer. 2011 Jul 1;56(7):1143-5 - PubMed
  86. Cancer Res. 2000 Mar 15;60(6):1619-25 - PubMed
  87. Science. 2017 Jan 20;355(6322): - PubMed
  88. Nat Med. 1998 Aug;4(8):882-5 - PubMed
  89. Mol Cytogenet. 2016 Jan 22;9:5 - PubMed
  90. J Cell Physiol. 2006 Aug;208(2):461-72 - PubMed
  91. Hum Genet. 1991 Nov;88(1):39-41 - PubMed
  92. Evolution. 2010 Apr 1;64(4):1173-83 - PubMed
  93. Mol Cytogenet. 2016 Feb 13;9:15 - PubMed
  94. Cell. 2013 Apr 25;153(3):666-77 - PubMed
  95. Science. 2011 Aug 19;333(6045):1039-43 - PubMed
  96. Cancer Cell. 2007 Jan;11(1):25-36 - PubMed
  97. Cold Spring Harb Perspect Med. 2018 May 1;8(5):null - PubMed
  98. Mol Cytogenet. 2018 Jan 3;11:1 - PubMed
  99. Nat Rev Genet. 2010 Nov;11(11):813 - PubMed
  100. Epigenomics. 2014 Feb;6(1):45-58 - PubMed
  101. Nat Commun. 2015 Jul 06;6:7668 - PubMed
  102. Nat Rev Genet. 2012 Jan 24;13(3):189-203 - PubMed
  103. Science. 2017 Mar 24;355(6331):1330-1334 - PubMed
  104. J Clin Invest. 2010 Feb;120(2):636-44 - PubMed
  105. Mol Cytogenet. 2016 Dec 16;9:90 - PubMed
  106. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21119-23 - PubMed
  107. Nat Rev Mol Cell Biol. 2009 Jul;10(7):478-87 - PubMed
  108. Genomics. 2011 Oct;98(4):242-52 - PubMed
  109. Cell. 2008 Nov 28;135(5):879-93 - PubMed
  110. Nat Genet. 2016 Sep 28;48(10 ):1102-3 - PubMed
  111. J Eval Clin Pract. 2017 Feb;23 (1):233-237 - PubMed
  112. FEBS J. 2016 Mar;283(5):791-802 - PubMed
  113. Cell Cycle. 2014;13(4):528-37 - PubMed
  114. Cell Chromosome. 2004 Jan 13;3(1):1 - PubMed
  115. Dev Cell. 2017 Jun 19;41(6):638-651.e5 - PubMed
  116. Syst Biol Reprod Med. 2014 Feb;60(1):2-13 - PubMed
  117. Cancer Metastasis Rev. 2013 Dec;32(3-4):325-40 - PubMed
  118. Cancer Metastasis Rev. 2013 Dec;32(3-4):377-89 - PubMed
  119. Cell Biol Int. 2005 Dec;29(12):1057-65 - PubMed
  120. Cold Spring Harb Perspect Med. 2017 Jan 3;7(1):null - PubMed
  121. Cell Cycle. 2013 Dec 1;12(23):3640-9 - PubMed
  122. Mol Cytogenet. 2008 Nov 25;1:26 - PubMed
  123. Mol Genet Genomics. 2018 Mar 15;:null - PubMed
  124. Contrib Microbiol. 2006;13:16-44 - PubMed
  125. Genome. 2007 May;50(5):517-24 - PubMed
  126. Bioessays. 2007 Aug;29(8):783-94 - PubMed
  127. J Cell Sci. 2008 Jan;121 Suppl 1:1-84 - PubMed

Publication Types