Display options
Share it on

Environ Microbiol. 2018 May 24; doi: 10.1111/1462-2920.14278. Epub 2018 May 24.

Symbiont-mediated competition: Xenorhabdus bovienii confer an advantage to their nematode host Steinernema affine by killing competitor Steinernema feltiae.

Environmental microbiology

Kristen E Murfin, Daren R Ginete, Farrah Bashey, Heidi Goodrich-Blair

Affiliations

  1. Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
  2. Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA.
  3. Department of Biology, Indiana University, Bloomington, IN, 47405-3700, USA.

PMID: 29799156 PMCID: PMC6252146 DOI: 10.1111/1462-2920.14278

Abstract

Bacterial symbionts can affect several biotic interactions of their hosts, including their competition with other species. Nematodes in the genus Steinernema utilize Xenorhabdus bacterial symbionts for insect host killing and nutritional bioconversion. Here, we establish that the Xenorhabdus bovienii bacterial symbiont (Xb-Sa-78) of Steinernema affine nematodes can impact competition between S. affine and S. feltiae by a novel mechanism, directly attacking its nematode competitor. Through co-injection and natural infection assays we demonstrate the causal role of Xb-Sa-78 in the superiority of S. affine over S. feltiae nematodes during competition. Survival assays revealed that Xb-Sa-78 bacteria kill reproductive life stages of S. feltiae. Microscopy and timed infection assays indicate that Xb-Sa-78 bacteria colonize S. feltiae nematode intestines, which alters morphology of the intestine. These data suggest that Xb-Sa-78 may be an intestinal pathogen of the non-native S. feltiae nematode, although it is a nonharmful colonizer of the native nematode host, S. affine. Screening additional X. bovienii isolates revealed that intestinal infection and killing of S. feltiae is conserved among isolates from nematodes closely related to S. affine, although the underlying killing mechanisms may vary. Together, these data demonstrate that bacterial symbionts can modulate competition between their hosts, and reinforce specificity in mutualistic interactions.

© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

References

  1. Nat Rev Microbiol. 2007 Aug;5(8):634-46 - PubMed
  2. Proc Biol Sci. 2008 Feb 7;275(1632):293-9 - PubMed
  3. Syst Parasitol. 2010 Sep;77(1):1-12 - PubMed
  4. Mol Ecol. 2014 Mar;23(6):1558-70 - PubMed
  5. Naturwissenschaften. 2005 Oct;92(10):472-6 - PubMed
  6. Sci Rep. 2017 Jul 24;7(1):6270 - PubMed
  7. Parasitology. 2018 May;145(6):770-774 - PubMed
  8. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7624-8 - PubMed
  9. Gene. 1991 Dec 20;109(1):167-8 - PubMed
  10. Philos Trans R Soc Lond B Biol Sci. 2015 Aug 19;370(1675): - PubMed
  11. Cell Microbiol. 2013 Sep;15(9):1545-59 - PubMed
  12. Appl Environ Microbiol. 2007 Aug;73(16):5338-46 - PubMed
  13. Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19288-92 - PubMed
  14. Trends Parasitol. 2009 Jun;25(6):261-8 - PubMed
  15. J Invertebr Pathol. 2006 Nov;93(3):157-69 - PubMed
  16. BMC Genomics. 2015 Nov 02;16:889 - PubMed
  17. Curr Biol. 2010 Jul 13;20(13):1222-6 - PubMed
  18. Curr Opin Microbiol. 2013 Feb;16(1):4-9 - PubMed
  19. Science. 2010 Jul 9;329(5988):212-5 - PubMed
  20. ISME J. 2016 Aug;10(8):1915-24 - PubMed
  21. J Evol Biol. 2009 Oct;22(10):2104-17 - PubMed
  22. Ecol Evol. 2016 May 05;6(11):3750-3759 - PubMed
  23. Parasitology. 1966 May;56(2):385-90 - PubMed
  24. Cell Microbiol. 2009 Jul;11(7):1025-33 - PubMed
  25. Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10800-7 - PubMed
  26. Proc Biol Sci. 2015 Jan 7;282(1798):20141896 - PubMed
  27. Appl Environ Microbiol. 1990 Mar;56(3):815-8 - PubMed
  28. Appl Microbiol Biotechnol. 2001 Sep;56(5-6):623-33 - PubMed
  29. Appl Environ Microbiol. 2006 Nov;72(11):7324-30 - PubMed
  30. Cell. 2009 Dec 24;139(7):1268-78 - PubMed
  31. J Bacteriol. 2003 May;185(10):3147-54 - PubMed
  32. Cell Microbiol. 2005 Dec;7(12):1723-35 - PubMed
  33. Oecologia. 2013 Dec;173(4):1471-80 - PubMed
  34. Evol Appl. 2009 Feb;2(1):32-9 - PubMed
  35. mBio. 2015 Jun 04;6(3):e00076 - PubMed
  36. Ecol Evol. 2012 Oct;2(10):2521-6 - PubMed
  37. Appl Environ Microbiol. 2010 Jan;76(1):221-9 - PubMed
  38. J Invertebr Pathol. 2008 Jun;98(2):211-7 - PubMed
  39. J Invertebr Pathol. 2010 Jun;104(2):67-74 - PubMed
  40. J Invertebr Pathol. 2009 Sep;102(1):40-3 - PubMed
  41. J Bacteriol. 2011 Jul;193(14):3624-32 - PubMed
  42. Annu Rev Entomol. 2010;55:247-66 - PubMed
  43. Science. 2012 Jun 8;336(6086):1268-73 - PubMed
  44. J Vis Exp. 2012 Oct 19;(68): - PubMed
  45. PLoS One. 2011;6(11):e27909 - PubMed
  46. PLoS Pathog. 2013;9(6):e1003459 - PubMed
  47. Evolution. 2013 Mar;67(3):900-7 - PubMed
  48. Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12465-70 - PubMed
  49. Appl Environ Microbiol. 2004 Nov;70(11):6473-80 - PubMed
  50. J Evol Biol. 2004 Sep;17(5):985-93 - PubMed
  51. BMC Evol Biol. 2006 Sep 05;6:68 - PubMed
  52. Proc Biol Sci. 2007 Aug 7;274(1620):1905-12 - PubMed
  53. Parasitol Res. 2003 Dec;91(6):520-4 - PubMed
  54. N Engl J Med. 2000 Dec 28;343(26):1925-32 - PubMed
  55. Evolution. 2010 Nov;64(11):3198-204 - PubMed
  56. Trends Parasitol. 2011 Nov;27(11):514-22 - PubMed
  57. J Hyg (Lond). 1977 Aug;79(1):89-102 - PubMed

Publication Types

Grant support