Display options
Share it on

Sci Rep. 2018 May 22;8(1):7988. doi: 10.1038/s41598-018-26370-z.

3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices.

Scientific reports

Mohamed Ramadan, Ahmed M Abdellah, Saad G Mohamed, Nageh K Allam

Affiliations

  1. Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
  2. Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt. [email protected].

PMID: 29789633 PMCID: PMC5964253 DOI: 10.1038/s41598-018-26370-z

Abstract

Rational design of binder-free materials with high cyclic stability and high conductivity is a great need for high performance supercapacitors. We demonstrate a facile one-step synthesis method of binder-free MnO@C nanofibers as electrodes for supercapacitor applications. The topology of the fabricated nanofibers was investigated using FESEM and HRTEM. The X-ray photoelectron spectroscopy (XPS) and the X-ray diffraction (XRD) analyses confirm the formation of the MnO structure. The electrospun MnO@C electrodes achieve high specific capacitance of 578 F/g at 1 A/g with an outstanding cycling performance. The electrodes also show 127% capacity increasing after 3000 cycles. An asymmetric supercapacitor composed of activated carbon as the negative electrode and MnO@C as the positive electrode shows an ultrahigh energy density of 35.5 Wh/kg with a power density of 1000 W/kg. The device shows a superior columbic efficiency, cycle life, and capacity retention.

References

  1. ACS Nano. 2014 Sep 23;8(9):9531-41 - PubMed
  2. ACS Appl Mater Interfaces. 2015 Sep 16;7(36):19930-40 - PubMed
  3. Sci Rep. 2017 Oct 16;7(1):13227 - PubMed
  4. Chem Soc Rev. 2017 Nov 13;46(22):6816-6854 - PubMed
  5. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4233-8 - PubMed
  6. Sci Rep. 2014 Apr 28;4:4824 - PubMed
  7. Sci Rep. 2017 Aug 15;7(1):8260 - PubMed
  8. Nano Lett. 2011 Oct 12;11(10):4438-42 - PubMed
  9. Nat Mater. 2005 May;4(5):366-77 - PubMed
  10. Sci Rep. 2013;3:2693 - PubMed
  11. Sci Rep. 2015 Sep 16;5:14146 - PubMed
  12. ACS Nano. 2013 Aug 27;7(8):7083-92 - PubMed
  13. Chem Soc Rev. 2012 Jan 21;41(2):797-828 - PubMed
  14. Sci Rep. 2015 Apr 21;5:9854 - PubMed
  15. Sci Rep. 2016 Feb 18;6:21310 - PubMed
  16. ACS Appl Mater Interfaces. 2017 Mar 1;9(8):6967-6978 - PubMed
  17. Nat Mater. 2008 Nov;7(11):845-54 - PubMed
  18. Small. 2012 Apr 23;8(8):1130-66 - PubMed
  19. Sci Rep. 2017 Feb 20;7:43104 - PubMed
  20. Sci Rep. 2013;3:2193 - PubMed
  21. Chem Rev. 2004 Oct;104(10):4245-69 - PubMed
  22. Sci Rep. 2017 Sep 20;7(1):12005 - PubMed
  23. Sci Rep. 2017 Nov 9;7(1):15153 - PubMed
  24. Chem Soc Rev. 2011 Mar;40(3):1697-721 - PubMed
  25. Acc Chem Res. 2013 May 21;46(5):1075-83 - PubMed
  26. Sci Rep. 2014 Mar 06;4:4229 - PubMed

Publication Types