Display options
Share it on

Cancers (Basel). 2018 Jun 09;10(6). doi: 10.3390/cancers10060191.

WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma.

Cancers

Sergio Rivas, Inés M Antón, Francisco Wandosell

Affiliations

  1. Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain. [email protected].
  2. Centro Nacional de Biotecnología (CNB-CSIC), 28031 Madrid, Spain. [email protected].
  3. Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain. [email protected].
  4. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28031 Madrid, Spain. [email protected].
  5. Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain. [email protected].
  6. Centro Nacional de Biotecnología (CNB-CSIC), 28031 Madrid, Spain. [email protected].
  7. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28031 Madrid, Spain. [email protected].
  8. Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain. [email protected].
  9. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28031 Madrid, Spain. [email protected].

PMID: 29890731 PMCID: PMC6024887 DOI: 10.3390/cancers10060191

Abstract

Wild-type p53 (wtp53) is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53) is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein), correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC)-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44), prominin-1 (CD133), yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.

Keywords: Akt; CSCs; TICs; WIP; YAP/TAZ; glioma; proliferation; signalling in cancer; survival

References

  1. Clin Cancer Res. 2013 Sep 15;19(18):4925-30 - PubMed
  2. Cancer Res. 2007 Jan 1;67(1):167-77 - PubMed
  3. Mol Cell Biol. 2003 Nov;23(22):8058-69 - PubMed
  4. Nature. 2012 Aug 23;488(7412):522-6 - PubMed
  5. Acta Neuropathol. 2016 Jun;131(6):803-20 - PubMed
  6. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14671-6 - PubMed
  7. Oncogene. 2010 May 6;29(18):2628-37 - PubMed
  8. Blood. 2004 Dec 1;104(12):3454-62 - PubMed
  9. Trends Cell Biol. 2007 Mar;17(3):107-17 - PubMed
  10. PLoS One. 2012;7(4):e32715 - PubMed
  11. Development. 2014 Apr;141(8):1614-26 - PubMed
  12. Cell. 2012 Dec 21;151(7):1443-56 - PubMed
  13. Immunol Res. 2009;44(1-3):99-111 - PubMed
  14. PLoS One. 2013 Jun 10;8(6):e65539 - PubMed
  15. J Cell Biol. 2012 Oct 29;199(3):527-44 - PubMed
  16. Cancer Res. 2010 Jun 1;70(11):4260-4 - PubMed
  17. Cell. 2009 Dec 24;139(7):1327-41 - PubMed
  18. Oncologist. 2011;16 Suppl 1:12-9 - PubMed
  19. Exp Cell Res. 2004 Aug 15;298(2):485-98 - PubMed
  20. Nature. 1994 Feb 17;367(6464):645-8 - PubMed
  21. Nat Med. 2011 Mar;17(3):313-9 - PubMed
  22. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15362-7 - PubMed
  23. Cereb Cortex. 2012 May;22(5):1191-202 - PubMed
  24. Cell. 2014 Jul 3;158(1):157-70 - PubMed
  25. Cancer Cell. 2006 Oct;10(4):269-80 - PubMed
  26. Cell. 2000 Jan 7;100(1):57-70 - PubMed
  27. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5034-7 - PubMed
  28. Nat Rev Drug Discov. 2009 Aug;8(8):627-44 - PubMed
  29. Physiol Rev. 2014 Oct;94(4):1287-312 - PubMed
  30. Cell Rep. 2016 Nov 15;17(8):1962-1977 - PubMed
  31. Blood. 2010 May 27;115(21):4237-46 - PubMed
  32. EMBO Rep. 2016 Feb;17(2):188-201 - PubMed
  33. Nature. 2015 Jan 22;517(7535):460-5 - PubMed
  34. Cell. 1996 Mar 8;84(5):723-34 - PubMed
  35. Trends Cell Biol. 2007 Nov;17(11):555-62 - PubMed
  36. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  37. J Cell Physiol. 2008 Nov;217(2):468-77 - PubMed
  38. Curr Biol. 1996 Jan 1;6(1):70-5 - PubMed
  39. J Biol Chem. 2007 Mar 16;282(11):8446-53 - PubMed
  40. Nat Rev Mol Cell Biol. 2010 Jan;11(1):9-22 - PubMed
  41. Cell. 2008 May 16;133(4):704-15 - PubMed
  42. Eur J Cell Biol. 2012 Nov-Dec;91(11-12):869-77 - PubMed
  43. Cancer Metastasis Rev. 2003 Dec;22(4):375-84 - PubMed
  44. PLoS One. 2013 Aug 07;8(8):e70364 - PubMed
  45. Cancer Res. 2003 Sep 15;63(18):5821-8 - PubMed
  46. Nature. 2004 Nov 18;432(7015):396-401 - PubMed
  47. Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203 - PubMed
  48. Cell. 2007 Jun 29;129(7):1261-74 - PubMed
  49. Immunity. 2002 Feb;16(2):193-204 - PubMed
  50. Oncogene. 2017 Jun 22;36(25):3515-3527 - PubMed
  51. Trends Cell Biol. 2017 Aug;27(8):595-607 - PubMed
  52. Mol Cell Biol. 2014 Jul;34(14):2600-10 - PubMed
  53. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7438-43 - PubMed
  54. EMBO J. 1998 Dec 1;17(23):6932-41 - PubMed
  55. Nature. 2001 Nov 1;414(6859):105-11 - PubMed
  56. Cell. 2002 Nov 15;111(4):565-76 - PubMed
  57. Nat Med. 1997 Jul;3(7):730-7 - PubMed
  58. Curr Opin Cell Biol. 2008 Apr;20(2):235-41 - PubMed
  59. Cell. 1994 Aug 26;78(4):635-44 - PubMed
  60. FEBS Lett. 2005 Oct 10;579(24):5253-9 - PubMed
  61. J Cell Biol. 1998 Sep 7;142(5):1325-35 - PubMed
  62. Curr Biol. 2006 Dec 5;16(23):2337-44 - PubMed
  63. Cell. 2009 Apr 3;137(1):87-98 - PubMed
  64. PLoS One. 2008 Aug 06;3(8):e2888 - PubMed
  65. Curr Biol. 2010 Feb 23;20(4):339-45 - PubMed
  66. Oncogene. 2010 Oct 28;29(43):5839-49 - PubMed
  67. Cell. 2011 Nov 11;147(4):759-72 - PubMed
  68. Curr Biol. 1998 Dec 17-31;8(25):1347-56 - PubMed
  69. Dev Cell. 2010 Apr 20;18(4):592-604 - PubMed
  70. Dev Cell. 2007 Apr;12(4):487-502 - PubMed
  71. Nature. 2008 Oct 23;455(7216):1129-33 - PubMed
  72. J Biol Chem. 1998 Aug 14;273(33):20992-5 - PubMed
  73. Cancer Cell. 2008 Dec 9;14(6):458-70 - PubMed
  74. Mol Cell. 2002 Dec;10(6):1269-81 - PubMed
  75. Stem Cells. 2015 Mar;33(3):646-60 - PubMed
  76. Eur J Cell Biol. 2011 Feb-Mar;90(2-3):213-23 - PubMed
  77. EMBO J. 1996 Oct 1;15(19):5326-35 - PubMed
  78. PLoS Biol. 2009 Jun 2;7(6):e1000121 - PubMed
  79. Nat Rev Cancer. 2008 Oct;8(10):755-68 - PubMed
  80. J Biol Chem. 1999 Jun 11;274(24):17103-8 - PubMed
  81. Hum Mol Genet. 1995 Jul;4(7):1127-35 - PubMed
  82. Nature. 2007 Jul 26;448(7152):439-44 - PubMed
  83. Cell. 2010 Dec 23;143(7):1136-48 - PubMed
  84. Cancer Res. 2004 Jul 1;64(13):4394-9 - PubMed

Publication Types