Display options
Share it on

Chembiochem. 2018 Jun 04; doi: 10.1002/cbic.201800229. Epub 2018 Jun 04.

Bioorthogonally Applicable Fluorescence Deactivation Strategy for Receptor Kinetics Study and Theranostic Pretargeting Approaches.

Chembiochem : a European journal of chemical biology

Steffen van der Wal, Clarize M de Korne, Laurens G L Sand, Danny M van Willigen, Pancras C W Hogendoorn, Karoly Szuhai, Fijs W B van Leeuwen, Tessa Buckle

Affiliations

  1. Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
  2. Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
  3. Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
  4. Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
  5. Division of Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AvL), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

PMID: 29863301 PMCID: PMC6120557 DOI: 10.1002/cbic.201800229

Abstract

The availability of a receptor for theranostic pretargeting approaches was assessed by use of a new click-chemistry-based deactivatable fluorescence-quenching concept. The efficacy was evaluated in a cell-based model system featuring both membranous (available) and internalized (unavailable) receptor fractions of the clinically relevant receptor chemokine receptor 4 (CXCR4). Proof of concept was achieved with a deactivatable tracer consisting of a CXCR4-specific peptide functionalized with a Cy5 dye bearing a chemoselective azide handle (N

© 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Keywords: click chemistry; deactivatable; fluorescence; pretargeting; theranostics

References

  1. Chem Soc Rev. 2012 Aug 7;41(15):5239-61 - PubMed
  2. J Nucl Med. 2012 Oct;53(10):1625-32 - PubMed
  3. Theranostics. 2013;3(1):34-9 - PubMed
  4. Theranostics. 2012;2(5):523-40 - PubMed
  5. J Nucl Med. 2003 Mar;44(3):400-11 - PubMed
  6. Bioconjug Chem. 2016 May 18;27(5):1253-8 - PubMed
  7. Chem Soc Rev. 2010 Apr;39(4):1272-9 - PubMed
  8. Curr Opin Chem Biol. 2014 Aug;21:161-9 - PubMed
  9. Nucl Med Biol. 2006 May;33(4):489-94 - PubMed
  10. Acc Chem Res. 2011 Feb 15;44(2):83-90 - PubMed
  11. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13872-7 - PubMed
  12. Theranostics. 2017 Jan 12;7(3):624-633 - PubMed
  13. J Nucl Med. 2016 Feb;57(2):248-51 - PubMed
  14. Biomaterials. 2012 Jan;33(3):867-75 - PubMed
  15. Nature. 2001 Mar 1;410(6824):50-6 - PubMed
  16. PLoS One. 2013;8(1):e48324 - PubMed
  17. Cancer Res. 2014 Nov 1;74(21):6216-23 - PubMed
  18. Chem Commun (Camb). 2014 Sep 4;50(68):9733-6 - PubMed
  19. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  20. EJNMMI Res. 2011 Dec 01;1(1):31 - PubMed
  21. Curr Top Med Chem. 2010;10(11):1135-44 - PubMed
  22. Cancer Biother Radiopharm. 2007 Feb;22(1):33-9 - PubMed
  23. Biotechniques. 2009 Jul;47(1):625-32 - PubMed
  24. Oncogene. 2007 May 28;26(25):3734-44 - PubMed
  25. Bioconjug Chem. 1993 Mar-Apr;4(2):105-11 - PubMed
  26. Org Biomol Chem. 2013 Oct 14;11(38):6439-55 - PubMed
  27. Bioconjug Chem. 2011 May 18;22(5):859-64 - PubMed
  28. Org Lett. 2007 Sep 13;9(19):3797-800 - PubMed
  29. Transl Oncol. 2011 Aug;4(4):234-40 - PubMed
  30. Bioconjug Chem. 2018 Apr 18;29(4):1312-1318 - PubMed
  31. Clin Cancer Res. 2010 Jun 1;16(11):2927-31 - PubMed
  32. Eur J Cancer. 2015 Nov;51(17):2624-33 - PubMed
  33. Chemistry. 2016 Aug 8;22(33):11500-8 - PubMed
  34. Org Biomol Chem. 2009 Mar 7;7(5):856-9 - PubMed
  35. J Am Chem Soc. 2015 Sep 9;137(35):11461-75 - PubMed

Publication Types