Display options
Share it on

Biomark Res. 2018 Jun 14;6:22. doi: 10.1186/s40364-018-0136-9. eCollection 2018.

Kinomic profiling of glioblastoma cells reveals PLCG1 as a target in restricted glucose.

Biomarker research

Kiera Walker, Nathaniel H Boyd, Joshua C Anderson, Christopher D Willey, Anita B Hjelmeland, Meng

Affiliations

  1. 1Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA.
  2. 2Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL USA.

PMID: 29946469 PMCID: PMC6001119 DOI: 10.1186/s40364-018-0136-9

Abstract

BACKGROUND: For glioblastoma (GBM) treatments to be effective in vivo, understanding the effects of the tumor microenvironment is imperative. In traditional cell culture conditions, glucose concentrations do not model physiologic levels, nor the diminished concentrations found in tumor niches. We therefore sought to profile the differences in kinase activity in GBM cells cultured in restricted glucose to identify pathways that could be targeted with small molecule inhibitors.

METHODS: Using the PamStation12 platform, we examined the ability of GBM lysates from cells cultured in standard or low glucose conditions to phosphorylate 144 tyrosine and 144 serine/threonine peptides that correspond to known protein phosphorylation sites. Potential kinase targets were identified and validated using small molecule kinase inhibitors in GBM spheroid cultures.

RESULTS: Using results from two GBM patient-derived xenografts, we determined common changes to peptides derived from Phospholipase C, Gamma 1 (PLCG1) and Raf-1. Using PLC and Raf inhibitors, we found a significantly stronger growth inhibitory effect of the PLC inhibitor U73122 under restricted glucose conditions. In contrast, Raf inhibitors were significantly growth inhibitory regardless of the nutrient level tested.

CONCLUSIONS: Together, our data demonstrate that kinase activity is altered in low glucose conditions and that kinomic profiling can assist with the identification of effective strategies to target GBM growth. Our data further suggest the importance of accurately modeling the tumor microenvironment to reproduce cancer cell signaling and develop drug screens for anti-cancer agents.

Keywords: Cancer stem cell; Glioblastoma; Kinomics; PLCG1; Restricted glucose; Tumor initiating cell; Tumor microenvironment

Conflict of interest statement

The studies were reviewed and approved by appropriate ethics committees at the University of Alabama at Birmingham. Use of PDX was declared not human subjects by the Institutional Review Board. Passag

References

  1. Lancet Oncol. 2009 May;10 (5):459-66 - PubMed
  2. Chin J Cancer. 2014 Jan;33(1):32-9 - PubMed
  3. J Cell Mol Med. 2013 Apr;17(4):552-66 - PubMed
  4. Curr Pharm Des. 2011;17(23):2386-401 - PubMed
  5. J Vis Exp. 2016 Jun 09;(112): - PubMed
  6. Cancer Cell. 2009 Jun 2;15(6):501-13 - PubMed
  7. Cell Cycle. 2009 Oct 15;8(20):3274-84 - PubMed
  8. J Biochem. 2002 Mar;131(3):293-9 - PubMed
  9. Neurochem Int. 2015 Nov;90:261-70 - PubMed
  10. Mol Cancer Res. 2014 Nov;12(11):1547-59 - PubMed
  11. PLoS One. 2015 Sep 25;10(9):e0139267 - PubMed
  12. Cancer Res. 1989 Dec 1;49(23):6449-65 - PubMed
  13. Cell Death Differ. 2011 May;18(5):829-40 - PubMed
  14. Exp Oncol. 2010 Sep;32(3):125-7 - PubMed
  15. Oncogene. 2008 Feb 14;27(8):1155-66 - PubMed
  16. Int Immunopharmacol. 2015 Nov;29(1):105-9 - PubMed
  17. Nat Neurosci. 2013 Oct;16(10):1373-82 - PubMed
  18. Life Sci. 2012 Nov 27;91(21-22):1134-7 - PubMed
  19. Ann Anat. 2010 Sep 20;192(5):309-13 - PubMed
  20. Science. 2009 Sep 18;325(5947):1555-9 - PubMed
  21. Oncotarget. 2017 Apr 25;8(17 ):29220-29232 - PubMed
  22. Oncotarget. 2017 Mar 28;8(13):21710-21718 - PubMed
  23. PLoS One. 2014 Sep 25;9(9):e108444 - PubMed
  24. Cancer Cell. 2006 May;9(5):391-403 - PubMed
  25. Physiol Rev. 2000 Oct;80(4):1291-335 - PubMed
  26. Neuroreport. 2001 Jun 13;12 (8):1639-42 - PubMed
  27. Biochem Pharmacol. 2000 Nov 15;60(10):1457-66 - PubMed
  28. J Neurooncol. 1994;22(3):261-7 - PubMed
  29. Oncogene. 2015 Oct 1;34(40):5128-40 - PubMed
  30. Mol Cancer Ther. 2009 Jul;8(7):1846-55 - PubMed
  31. J Gen Physiol. 1927 Mar 7;8(6):519-30 - PubMed
  32. J Biol Chem. 1997 Jun 13;272(24):15045-8 - PubMed
  33. Eur J Pharmacol. 1998 Oct 23;359(2-3):223-33 - PubMed
  34. Neuro Oncol. 2014 Sep;16(9):1167-75 - PubMed
  35. Acta Neuropathol. 2005 Jan;109(1):93-108 - PubMed
  36. Br J Cancer. 1991 Oct;64(4):663-70 - PubMed
  37. Biochim Biophys Acta. 2015 Apr;1850(4):722-32 - PubMed
  38. N Engl J Med. 2005 Mar 10;352(10 ):987-96 - PubMed

Publication Types

Grant support