Display options
Share it on

Beilstein J Nanotechnol. 2018 May 09;9:1390-1398. doi: 10.3762/bjnano.9.131. eCollection 2018.

Nanoporous silicon nitride-based membranes of controlled pore size, shape and areal density: Fabrication as well as electrophoretic and molecular filtering characterization.

Beilstein journal of nanotechnology

Axel Seidenstücker, Stefan Beirle, Fabian Enderle, Paul Ziemann, Othmar Marti, Alfred Plettl

Affiliations

  1. Institute of Solid State Physics, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
  2. Institute for Applied Materials, KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  3. Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany.

PMID: 29977673 PMCID: PMC6009373 DOI: 10.3762/bjnano.9.131

Abstract

A new route will be presented for an all-parallel fabrication of highly flexible, freestanding membranes with well-defined porosity. This fabrication is based on arrays of well-defined Au nanoparticles (NPs) exhibiting a high degree of hexagonal order as obtained in a first step by a proven micellar approach. These NP arrays serve as masks in a second reactive ion etching (RIE) step optimized for etching Si and some important Si compounds (silicon oxide, silicon nitride) on the nanoscale. Application to commercially available silicon nitride membranes of well-defined thickness, delivers a diaphragm with millions of nanopores of intended and controlled size, shape, and areal density with narrow distributions of these parameters. Electrophoretic transport measurements indicated a very low flow resistance of these porous membranes in ionic solutions as expected theoretically. Size-selective separation of protein molecules was demonstrated by real-time fluorescence microscopy.

Keywords: ion transport; micellar technique; molecular filtration; nanopores; solid-state membrane

References

  1. Nat Mater. 2004 May;3(5):284-5 - PubMed
  2. Nano Lett. 2014 Mar 12;14(3):1234-41 - PubMed
  3. Nat Nanotechnol. 2017 Jun 6;12(6):509-522 - PubMed
  4. Nat Nanotechnol. 2015 May;10(5):459-64 - PubMed
  5. Nat Nanotechnol. 2010 Dec;5(12):874-7 - PubMed
  6. Nanotechnology. 2009 Dec 2;20(48):485303 - PubMed
  7. Sci Rep. 2014 May 21;4:5000 - PubMed
  8. Adv Mater. 2016 Aug;28(31):6529-45 - PubMed
  9. Langmuir. 2013 Apr 9;29(14):4421-5 - PubMed
  10. Nano Lett. 2010 Dec 8;10(12):5080-7 - PubMed
  11. ACS Nano. 2010 Nov 23;4(11):6973-81 - PubMed
  12. Science. 2014 Apr 18;344(6181):289-92 - PubMed
  13. J Phys Condens Matter. 2010 Nov 17;22(45):454134 - PubMed
  14. ACS Nano. 2013 Mar 26;7(3):1882-904 - PubMed
  15. J Am Chem Soc. 2008 Apr 2;130(13):4230-1 - PubMed
  16. Biochem Biophys Res Commun. 1995 Dec 5;217(1):21-7 - PubMed
  17. Angew Chem Int Ed Engl. 2013 Sep 9;52(37):9709-13 - PubMed
  18. ACS Appl Mater Interfaces. 2009 Apr;1(4):888-93 - PubMed
  19. Nat Nanotechnol. 2012 Nov;7(11):728-32 - PubMed
  20. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21039-44 - PubMed
  21. Nano Lett. 2012 Jan 11;12(1):512-7 - PubMed
  22. Nano Lett. 2014 Oct 8;14(10):6023-9 - PubMed
  23. Nanotechnology. 2015 Feb 6;26(5):055706 - PubMed
  24. Nat Nanotechnol. 2013 Dec;8(12):939-45 - PubMed
  25. Nanotechnology. 2010 Apr 9;21(14):145309 - PubMed
  26. Science. 2009 Mar 27;323(5922):1705-8 - PubMed
  27. Langmuir. 2007 Sep 25;23(20):10150-5 - PubMed
  28. Beilstein J Nanotechnol. 2013 Dec 12;4:886-94 - PubMed
  29. ACS Nano. 2008 Apr;2(4):766-72 - PubMed
  30. Physiol Rev. 1953 Jul;33(3):387-423 - PubMed
  31. Nano Lett. 2012 Jul 11;12(7):3437-42 - PubMed
  32. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Sep-Oct;1(5):568-81 - PubMed
  33. Nature. 2007 Feb 15;445(7129):749-53 - PubMed

Publication Types