Display options
Share it on

Front Physiol. 2018 May 09;9:509. doi: 10.3389/fphys.2018.00509. eCollection 2018.

Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish.

Frontiers in physiology

Jia-Min Li, Ling-Yu Li, Xuan Qin, Pascal Degrace, Laurent Demizieux, Samwel M Limbu, Xin Wang, Mei-Ling Zhang, Dong-Liang Li, Zhen-Yu Du

Affiliations

  1. Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China.
  2. Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
  3. Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR1231 "Lipides, Nutrition, Cancer," Université Bourgogne Franche-Comté, Dijon, France.
  4. Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania.

PMID: 29867554 PMCID: PMC5954090 DOI: 10.3389/fphys.2018.00509

Abstract

Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin (

Keywords: FA β-oxidation; dyslipidemia; low carnitine zebrafish; metabolism; mildronate

References

  1. Life Sci. 2008 Oct 24;83(17-18):613-9 - PubMed
  2. J Cardiovasc Pharmacol. 2006 Dec;48(6):314-9 - PubMed
  3. Meat Sci. 2004 Mar;66(3):531-41 - PubMed
  4. Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1036-1048 - PubMed
  5. J Clin Endocrinol Metab. 1997 Aug;82(8):2552-8 - PubMed
  6. Br J Pharmacol. 2009 Aug;157(8):1549-56 - PubMed
  7. J Pharmacol Exp Ther. 1999 Apr;289(1):93-102 - PubMed
  8. J Biol Chem. 2007 Jul 20;282(29):20816-26 - PubMed
  9. Biochim Biophys Acta. 2014 Jul;1841(7):919-33 - PubMed
  10. J Lipid Res. 2003 Jan;44(1):144-53 - PubMed
  11. Biochim Biophys Acta. 1983 Oct 11;753(3):399-410 - PubMed
  12. Life Sci. 2005 Oct 28;77(24):3078-91 - PubMed
  13. Biochim Biophys Acta. 2010 Apr;1801(4):526-36 - PubMed
  14. Biochem Pharmacol. 1988 Jan 15;37(2):195-202 - PubMed
  15. Biochim Biophys Acta. 1994 Apr 12;1226(1):25-30 - PubMed
  16. Am J Physiol. 1997 Apr;272(4 Pt 1):E656-60 - PubMed
  17. Adv Exp Med Biol. 2003;544:307-14 - PubMed
  18. J Cardiovasc Pharmacol Ther. 1996 Jul;1(3):235-242 - PubMed
  19. Biochim Biophys Acta. 2013 Feb;1831(2):291-9 - PubMed
  20. Neurology. 1975 Jan;25(1):16-24 - PubMed
  21. Semin Liver Dis. 2008 Nov;28(4):351-9 - PubMed
  22. Eur J Biochem. 2001 Mar;268(6):1876-87 - PubMed
  23. Physiol Rev. 1983 Oct;63(4):1420-80 - PubMed
  24. Basic Res Cardiol. 2000 Oct;95(5):343-8 - PubMed
  25. Lab Anim (NY). 2002 Mar;31(3):34-40 - PubMed
  26. Aquaculture. 2015 Jul 1;444:1-12 - PubMed
  27. Sci Rep. 2017 Jan 19;7:40815 - PubMed
  28. Annu Rev Biochem. 1988;57:261-83 - PubMed
  29. Pediatr Res. 1994 Sep;36(3):288-92 - PubMed
  30. J Biol Chem. 1979 Jun 10;254(11):4585-95 - PubMed
  31. Br J Nutr. 2006 May;95(5):905-15 - PubMed
  32. Br J Nutr. 2014 Mar 14;111(5):808-18 - PubMed
  33. Endocrinology. 2006 Aug;147(8):3709-18 - PubMed
  34. N Engl J Med. 1988 Nov 17;319(20):1331-6 - PubMed
  35. Curr Diab Rep. 2003 Feb;3(1):65-72 - PubMed
  36. Biochem Pharmacol. 1995 May 17;49(10 ):1403-10 - PubMed
  37. Mol Cell Biochem. 2004 Mar;258(1-2):171-82 - PubMed
  38. Adv Drug Deliv Rev. 2009 Nov 30;61(14):1353-62 - PubMed
  39. Biochem J. 1998 Apr 1;331 ( Pt 1):153-60 - PubMed
  40. J Clin Endocrinol Metab. 1986 Jun;62(6):1155-62 - PubMed
  41. J Biol Chem. 1957 May;226(1):497-509 - PubMed
  42. Physiol Behav. 2008 Oct 20;95(3):341-7 - PubMed
  43. Biol Pharm Bull. 2000 Jun;23 (6):770-3 - PubMed
  44. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1090-4 - PubMed
  45. PLoS One. 2015 Jun 26;10(6):e0129937 - PubMed
  46. Vopr Med Khim. 1986 Jul-Aug;32(4):72-6 - PubMed
  47. Science. 2004 Nov 19;306(5700):1383-6 - PubMed
  48. Vopr Med Khim. 1989 Mar-Apr;35(2):59-64 - PubMed
  49. Nat Rev Mol Cell Biol. 2002 Apr;3(4):267-77 - PubMed
  50. Arch Int Pharmacodyn Ther. 1996 Mar-Apr;331(2):163-78 - PubMed

Publication Types