Display options
Share it on

Cell Mol Gastroenterol Hepatol. 2018 Mar 10;6(1):79-96. doi: 10.1016/j.jcmgh.2018.02.007. eCollection 2018.

Monoclonal Antibodies Reveal Dynamic Plasticity Between Lgr5- and Bmi1-Expressing Intestinal Cell Populations.

Cellular and molecular gastroenterology and hepatology

Nicholas R Smith, John R Swain, Paige S Davies, Alexandra C Gallagher, Michael S Parappilly, Catherine Z Beach, Philip R Streeter, Ian A Williamson, Scott T Magness, Melissa H Wong

Affiliations

  1. Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon.
  2. Department of Pediatrics, Oregon Health & Science University, Portland, Oregon.
  3. Oregon Health & Science University Stem Cell Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.
  4. Department of Biomedical Engineering, Department of Medicine, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.

PMID: 29928673 PMCID: PMC6008251 DOI: 10.1016/j.jcmgh.2018.02.007

Abstract

BACKGROUND & AIMS: Continual renewal of the intestinal epithelium is dependent on active- and slow-cycling stem cells that are confined to the crypt base. Tight regulation of these stem cell populations maintains homeostasis by balancing proliferation and differentiation to support critical intestinal functions. The hierarchical relation of discrete stem cell populations in homeostasis or during regenerative epithelial repair remains controversial. Although recent studies have supported a model for the active-cycling leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)

METHODS: We used novel monoclonal antibodies (mAbs) raised against murine intestinal epithelial cells in conjunction with ISC-green fluorescent protein (GFP) reporter mice to analyze relations between ISC populations by microscopy. Ex vivo 3-dimensional cultures, flow cytometry, and quantitative reverse-transcription polymerase chain reaction analyses were performed.

RESULTS: Two novel mAbs recognized distinct subpopulations of the intestinal epithelium and when used in combination permitted isolation of discrete Lgr5

CONCLUSIONS: These data showed the functional utility of murine mAbs in the isolation and investigation of Lgr5

Keywords: 3D, 3-dimensional; 4-OHT, 4-hydroxytamoxifen; APC, allophycocyanin; Bmi1; Bmi1, B lymphoma Mo-MLV insertion region 1 homolog; Egf, epidermal growth factor; FACS, fluorescence-activated cell sorting; GFP, green fluorescent protein; HBSS, Hank’s balanced salt solution; Hierarchy; ISC, intestinal stem cell; Intestinal Stem Cells; Lgr5; Lgr5, leucine-rich repeat-containing G-protein–coupled receptor 5; Lyz, lysozyme; OHSU, Oregon Health and Science University; PBS, phosphate-buffered saline; PE, Phycoerythrin; Plasticity; Rspo1, R-spondin1; TdT, tdTomato; Wnt, wingless-type MMTV (mouse mammary tumor virus) integration site; cDNA, complementary DNA; mAb, monoclonal antibody; mRNA, messenger RNA; qRT-PCR, quantitative reverse-transcription polymerase chain reaction

References

  1. J Physiol. 2016 Sep 1;594(17 ):4781-90 - PubMed
  2. Cell Mol Gastroenterol Hepatol. 2017 Jan 25;3(3):389-409 - PubMed
  3. Nat Genet. 2008 Jul;40(7):915-20 - PubMed
  4. Cell Stem Cell. 2013 Dec 5;13(6):734-44 - PubMed
  5. Cell Rep. 2013 Oct 31;5(2):421-32 - PubMed
  6. Cell Mol Gastroenterol Hepatol. 2016 Feb 1;2(2):175-188 - PubMed
  7. EMBO J. 2012 Jun 12;31(14):3079-91 - PubMed
  8. Nature. 2007 Oct 25;449(7165):1003-7 - PubMed
  9. Gastroenterology. 2013 Aug;145(2):383-95.e1-21 - PubMed
  10. Gastroenterology. 2012 Dec;143(6):1518-1529.e7 - PubMed
  11. Nature. 2011 Sep 18;478(7368):255-9 - PubMed
  12. Nat Neurosci. 2010 Jan;13(1):133-40 - PubMed
  13. Cell Tissue Kinet. 1974 May;7(3):271-83 - PubMed
  14. Annu Rev Immunol. 2003;21:759-806 - PubMed
  15. Biotechniques. 1992 Jun;12(6):842-7 - PubMed
  16. Cell Stem Cell. 2016 Feb 4;18(2):203-13 - PubMed
  17. Nature. 2016 Nov 24;539(7630):560-564 - PubMed
  18. Am J Physiol Gastrointest Liver Physiol. 2013 Oct 15;305(8):G542-51 - PubMed
  19. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14700-5 - PubMed
  20. Nature. 2011 Jan 20;469(7330):415-8 - PubMed
  21. Am J Physiol Gastrointest Liver Physiol. 2012 Jun 15;302(12):G1359-63 - PubMed
  22. Nature. 2011 Jul 04;476(7360):293-7 - PubMed
  23. Nat Cell Biol. 2011 Nov 27;14 (1):106-14 - PubMed
  24. Am J Anat. 1974 Dec;141(4):537-61 - PubMed
  25. Science. 2010 Jan 29;327(5965):542-5 - PubMed
  26. Science. 2011 Dec 9;334(6061):1420-4 - PubMed
  27. Stem Cell Reports. 2014 Nov 11;3(5):876-91 - PubMed
  28. Curr Protoc Mouse Biol. 2013 Dec 19;3(4):217-40 - PubMed
  29. Science. 2005 Aug 19;309(5738):1256-9 - PubMed
  30. Cell. 2012 Mar 30;149(1):146-58 - PubMed
  31. Gastroenterology. 2010 Dec;139(6):2072-2082.e5 - PubMed
  32. Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):179-84 - PubMed
  33. Mol Cell Endocrinol. 2011 Jun 6;339(1-2):144-50 - PubMed
  34. Stem Cells. 2007 Jul;25(7):1635-44 - PubMed
  35. EMBO J. 2014 Sep 17;33(18):2057-68 - PubMed
  36. Cell Stem Cell. 2017 Jul 6;21(1):78-90.e6 - PubMed
  37. Nature. 2015 Oct 29;526(7575):715-8 - PubMed
  38. Nature. 2009 May 14;459(7244):262-5 - PubMed
  39. Am J Physiol Gastrointest Liver Physiol. 2011 Mar;300(3):G409-17 - PubMed
  40. Cell Stem Cell. 2017 Jul 6;21(1):65-77.e5 - PubMed
  41. Proc Natl Acad Sci U S A. 2012 Jan 10;109 (2):466-71 - PubMed
  42. Nat Cell Biol. 2015 Mar;17(3):340-9 - PubMed
  43. Nat Cell Biol. 2012 Oct;14 (10 ):1099-1104 - PubMed
  44. Nature. 2013 Mar 7;495(7439):65-9 - PubMed

Publication Types

Grant support