Display options
Share it on

IEEE Sens J. 2018 Apr 15;18(8):3068-3079. doi: 10.1109/JSEN.2018.2805865. Epub 2018 Feb 14.

Node-Pore Coded Coincidence Correction: Coulter Counters, Code Design, and Sparse Deconvolution.

IEEE sensors journal

Michael Kellman, Francois Rivest, Alina Pechacek, Lydia Sohn, Michael Lustig

Affiliations

  1. Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley.
  2. Dept. of Mechanical Engineering, University of California, Berkeley.
  3. Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Switzerland.
  4. Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA.

PMID: 29988953 PMCID: PMC6034687 DOI: 10.1109/JSEN.2018.2805865

Abstract

We present a novel method to perform individual particle (e.g. cells or viruses) coincidence correction through joint channel design and algorithmic methods. Inspired by multiple-user communication theory, we modulate the channel response, with Node-Pore Sensing, to give each particle a binary Barker code signature. When processed with our modified successive interference cancellation method, this signature enables both the separation of coincidence particles and a high sensitivity to small particles. We identify several sources of modeling error and mitigate most effects using a data-driven self-calibration step and robust regression. Additionally, we provide simulation analysis to highlight our robustness, as well as our limitations, to these sources of stochastic system model error. Finally, we conduct experimental validation of our techniques using several encoded devices to screen a heterogeneous sample of several size particles.

Keywords: Barker Codes; Coincidence Correction; Computational Sensing; Coulter Counter; Inverse Problems; Node-Pore Sensing; Successive Interference Cancellation

References

  1. Lab Chip. 2017 Jul 25;17(15):2650-2666 - PubMed
  2. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13770-3 - PubMed
  3. Nat Methods. 2015 Jul;12(7):685-91 - PubMed
  4. Lab Chip. 2009 Oct 21;9(20):2881-9 - PubMed
  5. Biotechnol Adv. 2008 Mar-Apr;26(2):135-50 - PubMed
  6. Lab Chip. 2013 Apr 7;13(7):1302-7 - PubMed
  7. Anal Chem. 2015 Mar 3;87(5):2988-95 - PubMed
  8. Methods Cell Biol. 2011;102:127-57 - PubMed
  9. Nat Nanotechnol. 2011 Sep 18;6(10):615-24 - PubMed
  10. Lab Chip. 2014 Jan 7;14(1):63-77 - PubMed
  11. Nanoscale. 2017 May 11;9(18):5964-5974 - PubMed
  12. Lab Chip. 2016 Apr 21;16(8):1350-7 - PubMed
  13. Biophys J. 2008 Jul;95(1):273-86 - PubMed
  14. J Appl Physiol. 1957 Jan;10(1):56-70 - PubMed
  15. Nat Biotechnol. 2017 Jul;35(7):640-646 - PubMed
  16. Proc IEEE Int Conf Acoust Speech Signal Process. 2017 Mar;2017:1053-1057 - PubMed
  17. Lab Chip. 2014 Aug 7;14(15):2739-61 - PubMed
  18. Nano Today. 2011 Oct 1;6(5):531-545 - PubMed
  19. Proc Natl Acad Sci U S A. 2016 May 3;113(18):4947-52 - PubMed

Publication Types

Grant support