Display options
Share it on

Front Immunol. 2018 Jun 20;9:1401. doi: 10.3389/fimmu.2018.01401. eCollection 2018.

Synthetic Standards Combined With Error and Bias Correction Improve the Accuracy and Quantitative Resolution of Antibody Repertoire Sequencing in Human Naïve and Memory B Cells.

Frontiers in immunology

Simon Friedensohn, John M Lindner, Vanessa Cornacchione, Mariavittoria Iazeolla, Enkelejda Miho, Andreas Zingg, Simon Meng, Elisabetta Traggiai, Sai T Reddy

Affiliations

  1. Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
  2. Novartis Institutes for BioMedical Research, Basel, Switzerland.

PMID: 29973938 PMCID: PMC6019461 DOI: 10.3389/fimmu.2018.01401

Abstract

High-throughput sequencing of immunoglobulin (Ig) repertoires (Ig-seq) is a powerful method for quantitatively interrogating B cell receptor sequence diversity. When applied to human repertoires, Ig-seq provides insight into fundamental immunological questions, and can be implemented in diagnostic and drug discovery projects. However, a major challenge in Ig-seq is ensuring accuracy, as library preparation protocols and sequencing platforms can introduce substantial errors and bias that compromise immunological interpretation. Here, we have established an approach for performing highly accurate human Ig-seq by combining synthetic standards with a comprehensive error and bias correction pipeline. First, we designed a set of 85 synthetic antibody heavy-chain standards (

Keywords: B cells; antibody repertoire; bioinformatics; next-generation sequencing; systems immunology; unique molecular identifiers

References

  1. PLoS One. 2016 Aug 11;11(8):e0160853 - PubMed
  2. Nat Methods. 2011 Nov 20;9(1):72-4 - PubMed
  3. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1347-52 - PubMed
  4. Nat Immunol. 2017 Nov 16;18(12):1274-1278 - PubMed
  5. Front Immunol. 2014 Oct 20;5:520 - PubMed
  6. Sci Transl Med. 2013 Feb 6;5(171):171ra19 - PubMed
  7. Sci Immunol. 2016 Dec 16;1(6): - PubMed
  8. J Allergy Clin Immunol. 2018 May;141(5):1831-1843.e10 - PubMed
  9. Nat Rev Rheumatol. 2015 Mar;11(3):171-82 - PubMed
  10. Sci Adv. 2016 Mar 11;2(3):e1501371 - PubMed
  11. Genome Res. 2011 Sep;21(9):1543-51 - PubMed
  12. J Immunol. 2014 Jan 15;192(2):603-11 - PubMed
  13. Nat Med. 2016 Dec;22(12):1456-1464 - PubMed
  14. Nature. 2014 May 1;509(7498):55-62 - PubMed
  15. Nucleic Acids Res. 2015 Jan;43(Database issue):D413-22 - PubMed
  16. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4928-33 - PubMed
  17. Trends Immunol. 2015 Nov;36(11):738-749 - PubMed
  18. Nat Biotechnol. 2017 Sep;35(9):879-884 - PubMed
  19. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6470-5 - PubMed
  20. Sci Transl Med. 2014 Aug 6;6(248):248ra106 - PubMed
  21. Trends Immunol. 2008 Feb;29(2):91-7 - PubMed
  22. Nat Commun. 2013;4:2680 - PubMed
  23. BMC Immunol. 2014 Oct 16;15:40 - PubMed
  24. Blood. 2010 Aug 19;116(7):1070-8 - PubMed
  25. BMC Bioinformatics. 2012 Feb 14;13:31 - PubMed
  26. Sci Transl Med. 2015 Aug 26;7(302):302ra135 - PubMed
  27. J Immunol. 2016 Mar 15;196(6):2902-7 - PubMed
  28. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2259-64 - PubMed
  29. Nat Med. 2015 Jan;21(1):86-91 - PubMed
  30. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5 - PubMed
  31. Nat Protoc. 2016 Sep;11(9):1599-616 - PubMed
  32. Trends Biotechnol. 2017 Mar;35(3):203-214 - PubMed
  33. Nat Methods. 2014 Jun;11(6):653-5 - PubMed
  34. Sci Immunol. 2017 Jan 27;2(7):null - PubMed
  35. Nat Biotechnol. 2010 Sep;28(9):965-9 - PubMed
  36. PLoS One. 2011;6(8):e22365 - PubMed
  37. Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13463-8 - PubMed
  38. PLoS One. 2014 May 08;9(5):e96727 - PubMed
  39. Science. 2015 Jun 5;348(6239):aaa0698 - PubMed
  40. Nat Biotechnol. 2014 Feb;32(2):158-68 - PubMed

Publication Types