Display options
Share it on

ACS Omega. 2017 Nov 30;2(11):7936-7945. doi: 10.1021/acsomega.7b01175. Epub 2017 Nov 15.

Poly(l-lysine)-Coated Liquid Crystal Droplets for Sensitive Detection of DNA and Their Applications in Controlled Release of Drug Molecules.

ACS omega

Indu Verma, Sumyra Sidiq, Santanu Kumar Pal

Affiliations

  1. Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.

PMID: 30023567 PMCID: PMC6045355 DOI: 10.1021/acsomega.7b01175

Abstract

Interactions between DNA and adsorbed poly(l-lysine) (PLL) on liquid crystal (LC) droplets were investigated using polarizing optical microcopy and epi-fluorescence microscopy. Earlier, we demonstrated that adsorption of PLL to the LC/aqueous interface resulted in homeotropic orientation of the LC and thus exhibited a radial configuration of the LC confined within the droplets. Subsequent adsorption of DNA (single-stranded DNA/double-stranded DNA) at PLL-coated LC droplets was found to trigger an LC reorientation within the droplets, leading to preradial/bipolar configuration of those droplets. To our surprise, subsequent exposure of complementary ssDNA to ssDNA/adsorbed PLL-modified LC droplets did not cause the LC reorientation. This is likely due to the formation of polyplexes (DNA-PLL complex) as confirmed by fluorescence microscopy and atomic force microscopy. In addition, dsDNA-adsorbed PLL droplets have been found to be effectively useful to displace (controlled release) propidium iodide (a model drug) encapsulated within dsDNA over time. These observations suggest the potential for a label-free droplet-based LC detection system that can respond to DNA and may provide a simple method to develop DNA-based drug nanocarriers.

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Nanomaterials (Basel). 2016 Dec 01;6(12): - PubMed
  2. ACS Appl Mater Interfaces. 2013 Dec 26;5(24):13135-9 - PubMed
  3. Biochemistry. 1993 Jul 20;32(28):7143-51 - PubMed
  4. Angew Chem Int Ed Engl. 2006 Apr 21;45(17):2703-6 - PubMed
  5. Mol Pharm. 2010 Dec 6;7(6):1959-73 - PubMed
  6. Langmuir. 2012 Oct 16;28(41):14540-6 - PubMed
  7. Angew Chem Int Ed Engl. 2009;48(9):1652-5 - PubMed
  8. Adv Clin Chem. 2007;44:247-92 - PubMed
  9. Biochemistry. 1996 May 7;35(18):5616-23 - PubMed
  10. Biosens Bioelectron. 2014 Dec 15;62:84-9 - PubMed
  11. Langmuir. 2014 Sep 9;30(35):10668-77 - PubMed
  12. Langmuir. 2011 Oct 4;27(19):11784-9 - PubMed
  13. Science. 2011 Jun 10;332(6035):1297-300 - PubMed
  14. Analyst. 2016 May 10;141(10):2870-3 - PubMed
  15. J Phys Chem B. 2017 Apr 27;121(16):4247-4256 - PubMed
  16. Trends Biotechnol. 2011 May;29(5):240-50 - PubMed
  17. J Med Chem. 1978 Jul;21(7):658-68 - PubMed
  18. Colloids Surf B Biointerfaces. 2015 Mar 1;127:241-6 - PubMed
  19. Nano Lett. 2006 Oct;6(10):2243-8 - PubMed
  20. Langmuir. 2010 Jun 15;26(12):10234-42 - PubMed
  21. J Control Release. 2008 Feb 11;125(3):252-62 - PubMed
  22. Bioconjug Chem. 1999 Nov-Dec;10(6):993-1004 - PubMed
  23. Hum Gene Ther. 1996 Nov 10;7(17):2123-33 - PubMed
  24. J Am Chem Soc. 2008 Jul 2;130(26):8188-94 - PubMed
  25. Langmuir. 2013 Jan 8;29(1):387-92 - PubMed
  26. Lab Chip. 2011 Oct 21;11(20):3493-8 - PubMed
  27. J Am Chem Soc. 2013 Apr 3;135(13):5183-9 - PubMed
  28. J Phys Chem B. 2014 May 8;118(18):4970-5 - PubMed
  29. Viruses. 2010 Apr;2(4):1002-7 - PubMed
  30. Eur J Pharm Sci. 2010 Jun 14;40(3):159-70 - PubMed
  31. Langmuir. 2009 Aug 18;25(16):9016-24 - PubMed
  32. Eur J Pharm Biopharm. 2017 Jul;116:131-137 - PubMed

Publication Types