Display options
Share it on

Front Pharmacol. 2018 Jul 31;9:819. doi: 10.3389/fphar.2018.00819. eCollection 2018.

Nrf2 Activation Provides Atheroprotection in Diabetic Mice Through Concerted Upregulation of Antioxidant, Anti-inflammatory, and Autophagy Mechanisms.

Frontiers in pharmacology

Iolanda Lazaro, Laura Lopez-Sanz, Susana Bernal, Ainhoa Oguiza, Carlota Recio, Ana Melgar, Luna Jimenez-Castilla, Jesus Egido, Julio Madrigal-Matute, Carmen Gomez-Guerrero

Affiliations

  1. Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.
  2. Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain.
  3. Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York City, NY, United States.

PMID: 30108504 PMCID: PMC6080546 DOI: 10.3389/fphar.2018.00819

Abstract

Interactive relationships between metabolism, inflammation, oxidative stress, and autophagy in the vascular system play a key role in the pathogenesis of diabetic cardiovascular disease. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a stress-sensitive guarantor of cellular homeostasis, which cytoprotective contributions extend beyond the antioxidant defense. We investigated the beneficial effects and underlying mechanisms of the Nrf2 inducer tert-butyl hydroquinone (tBHQ) on diabetes-driven atherosclerosis. In the experimental model of streptozotocin-induced diabetes in apolipoprotein E-deficient mice, treatment with tBHQ increased Nrf2 activity in macrophages and vascular smooth muscle cells within atherosclerotic lesions. Moreover, tBHQ significantly decreased the size, extension and lipid content of atheroma plaques, and attenuated inflammation by reducing lesional macrophages (total number and M1/M2 phenotype balance), foam cell size and chemokine expression. Atheroprotection was accompanied by both systemic and local antioxidant effects, characterized by lower levels of superoxide anion and oxidative DNA marker 8-hydroxy-2'-deoxyguanosine, reduced expression of NADPH oxidase subunits, and increased antioxidant capacity. Interestingly, tBHQ treatment upregulated the gene and protein expression of autophagy-related molecules and also enhanced autophagic flux in diabetic mouse aorta.

Keywords: autophagy; diabetes complications; inflammation; nuclear factor (erythroid-derived 2)-like 2; redox balance

References

  1. Arterioscler Thromb Vasc Biol. 2013 Apr;33(4):760-8 - PubMed
  2. Arterioscler Thromb Vasc Biol. 2007 Dec;27(12):2714-21 - PubMed
  3. Diabetes. 2015 Oct;64(10):3600-13 - PubMed
  4. Mol Cell Biol. 2010 Jul;30(13):3275-85 - PubMed
  5. Free Radic Biol Med. 2015 Nov;88(Pt B):179-188 - PubMed
  6. EMBO J. 2011 Sep 06;30(22):4642-51 - PubMed
  7. Biochem Biophys Res Commun. 1997 Jul 18;236(2):313-22 - PubMed
  8. Cell Metab. 2012 Apr 4;15(4):534-44 - PubMed
  9. Behav Brain Res. 2018 Jan 15;336:32-39 - PubMed
  10. Diabetes. 2008 Oct;57(10):2809-17 - PubMed
  11. Annu Rev Pharmacol Toxicol. 2013;53:401-26 - PubMed
  12. Nat Commun. 2016 May 23;7:11624 - PubMed
  13. Nat Cell Biol. 2010 Mar;12(3):213-23 - PubMed
  14. Cell Metab. 2012 Apr 4;15(4):545-53 - PubMed
  15. J Immunol. 2010 Jul 1;185(1):569-77 - PubMed
  16. Neurochem Int. 2018 Jun;116:1-12 - PubMed
  17. Nature. 2009 Apr 30;458(7242):1131-5 - PubMed
  18. Diabetes. 2010 Dec;59(12):3198-207 - PubMed
  19. Autophagy. 2016 Oct 2;12(10):1902-1916 - PubMed
  20. Diabetes. 2014 Sep;63(9):3091-103 - PubMed
  21. Am J Physiol Cell Physiol. 2016 Aug 1;311(2):C166-78 - PubMed
  22. Arterioscler Thromb Vasc Biol. 2011 Jan;31(1):58-66 - PubMed
  23. Nat Cell Biol. 2014 May;16(5):401-14 - PubMed
  24. Clin Exp Hypertens. 2017;39(5):402-408 - PubMed
  25. Circulation. 2002 May 7;105(18):e138-43 - PubMed
  26. Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):1953-60 - PubMed
  27. J Alzheimers Dis. 2011;26(4):767-78 - PubMed
  28. Autophagy. 2011 Jun;7(6):629-42 - PubMed
  29. Arterioscler Thromb Vasc Biol. 2011 Dec;31(12):2787-91 - PubMed
  30. Cell Metab. 2008 Oct;8(4):318-24 - PubMed
  31. J Endocrinol. 2015 Jun;225(3):R83-99 - PubMed
  32. Autophagy. 2016;12(1):1-222 - PubMed
  33. J Cell Biol. 2015 Apr 13;209(1):13-22 - PubMed
  34. Circ Res. 2010 Oct 29;107(9):1058-70 - PubMed
  35. Sci Rep. 2016 Jul 20;6:29589 - PubMed
  36. Neuroscience. 2012 Oct 25;223:305-14 - PubMed
  37. J Biol Chem. 2010 Jul 16;285(29):22576-91 - PubMed
  38. Toxicol Appl Pharmacol. 2011 Aug 15;255(1):32-9 - PubMed
  39. J Cell Biol. 2011 Jan 10;192(1):17-27 - PubMed
  40. Inflamm Res. 2018 Jan;67(1):57-65 - PubMed
  41. J Neurosci. 2005 Nov 2;25(44):10321-35 - PubMed
  42. Eur J Immunol. 2011 Jul;41(7):2040-51 - PubMed
  43. Clin Investig Arterioscler. 2017 Mar - Apr;29(2):51-59 - PubMed
  44. Circ Res. 2007 May 25;100(10):1415-27 - PubMed
  45. Cardiovasc Res. 2013 Apr 1;98(1):107-15 - PubMed
  46. Mol Pharmacol. 2014 May;85(5):682-91 - PubMed
  47. Cell Metab. 2006 Jul;4(1):13-24 - PubMed
  48. Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):201-205 - PubMed
  49. Arterioscler Thromb Vasc Biol. 2008 Nov;28(11):1897-908 - PubMed
  50. FASEB J. 2010 Aug;24(8):3052-65 - PubMed
  51. Autophagy. 2015 Nov 2;11(11):2014-2032 - PubMed
  52. J Cereb Blood Flow Metab. 2017 Jan 1;:271678X17738701 - PubMed
  53. Redox Rep. 2014 May;19(3):107-17 - PubMed
  54. Cardiovasc Res. 2004 Mar 1;61(4):671-82 - PubMed
  55. Cell. 2011 Apr 29;145(3):341-55 - PubMed
  56. Free Radic Biol Med. 2013 Dec;65:693-703 - PubMed
  57. Sci Rep. 2015 Aug 11;5:13005 - PubMed
  58. Pharmacol Rev. 2011 Mar;63(1):218-42 - PubMed
  59. Cell Metab. 2013 Jan 8;17(1):20-33 - PubMed
  60. Cell Signal. 2011 May;23(5):883-92 - PubMed
  61. J Nephrol. 2012 Jan-Feb;25(1):84-9 - PubMed
  62. Diabetes. 2010 Apr;59(4):850-60 - PubMed
  63. Am J Pathol. 2013 May;182(5):1910-21 - PubMed
  64. Arterioscler Thromb Vasc Biol. 2015 Nov;35(11):e52-6 - PubMed

Publication Types