Display options
Share it on

Front Physiol. 2018 Jul 24;9:982. doi: 10.3389/fphys.2018.00982. eCollection 2018.

Adiponectin and Orexin-A as a Potential Immunity Link Between Adipose Tissue and Central Nervous System.

Frontiers in physiology

Rita Polito, Ersilia Nigro, Antonietta Messina, Maria L Monaco, Vincenzo Monda, Olga Scudiero, Giuseppe Cibelli, Anna Valenzano, Elisabetta Picciocchi, Christian Zammit, Daniela Pisanelli, Marcellino Monda, Ivan R Cincione, Aurora Daniele, Giovanni Messina

Affiliations

  1. Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.
  2. Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.
  3. Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy.
  4. CEINGE-Biotecnologie Avanzate s.c. a r.l., Naples, Italy.
  5. Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.
  6. Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
  7. Department of Anatomy, University of Malta, Msida, Malta.

PMID: 30140232 PMCID: PMC6094989 DOI: 10.3389/fphys.2018.00982

Abstract

Adipose tissue (AT) is strongly associated with development and progression of immune disorders through adipokines secretion, such as adiponectin. This protein has beneficial energetic properties and is involved in inflammation and immunity processes. Three oligomers of circulating adiponectin with different molecular weight are described: High (HMW), Medium (MMW), and Low (LMW). The HMW is the most biologically active oligomers. On binding to its receptors AdipoR1, AdipoR2, and T-cadherin, adiponectin acts on both innate and acquired immunity. The suppression of NF-κB activation and pro-inflammatory cytokine expression in macrophages is mediated by AdipoR1. AdipoR2 mediates polarization of anti-inflammatory M2 macrophages T-cadherin is essential for the M2 macrophage proliferation. Furthermore, adiponectin reduces T cells responsiveness and B cells lymphopoiesis. The immune system is very sensitive to environmental changes and it is not only interconnected with AT but also with the central nervous system (CNS). Cytokines, which are mediators of the immune system, exercise control over mediators of the CNS. Microglia, which are immunity cells belonging to the macrophage family, are present within the CNS. The nervous system is also involved in immunity through the production of neuropeptides such as orexin-A/hypocretin-1. This neuropeptide is involved in metabolic disorders, inflammation and in the immune response. The relationship between adipokines, immunity, and the nervous system is validated by both the role of orexin-A on fat, food intake, and energy expenditure, as well as by role of adiponectin on the CNS. In this review, we focused on the functions of adiponectin and orexin-A as a potential immunity link between AT and CNS.

Keywords: adiponectin; adipose tissue; central nervous system; immunity; orexin-A

References

  1. Scand J Rheumatol. 2008 Jul-Aug;37(4):260-8 - PubMed
  2. Front Mol Neurosci. 2015 Dec 18;8:77 - PubMed
  3. Biochem Biophys Res Commun. 2004 Jan 30;314(1):151-8 - PubMed
  4. Eur J Neurol. 2010 Feb;17(2):332-4 - PubMed
  5. Front Physiol. 2017 May 31;8:357 - PubMed
  6. Diabetes. 2005 Dec;54(12):3358-70 - PubMed
  7. Inflammation. 2014 Aug;37(4):1337-53 - PubMed
  8. PLoS One. 2016 Jun 03;11(6):e0156601 - PubMed
  9. ISRN Inflamm. 2013 Dec 22;2013:139239 - PubMed
  10. Am J Physiol Endocrinol Metab. 2011 Jul;301(1):E180-6 - PubMed
  11. Front Endocrinol (Lausanne). 2013 Mar 06;4:18 - PubMed
  12. Compr Physiol. 2014 Jul;4(3):1177-200 - PubMed
  13. Rev Assoc Med Bras (1992). 2015 Jan-Feb;61(1):72-80 - PubMed
  14. Cytokine. 2015 Oct;75(2):272-9 - PubMed
  15. Diabetes Obes Metab. 2013 Sep;15 Suppl 3:34-8 - PubMed
  16. Nat Clin Pract Rheumatol. 2007 Dec;3(12):716-24 - PubMed
  17. Nat Rev Neurosci. 2007 Mar;8(3):171-81 - PubMed
  18. Brain Behav Immun. 2016 Oct;57:58-67 - PubMed
  19. Int J Biochem Cell Biol. 2012 Mar;44(3):563-9 - PubMed
  20. Cytokine Growth Factor Rev. 2013 Feb;24(1):83-9 - PubMed
  21. Neurosci Lett. 2005 Jun 3;380(3):239-42 - PubMed
  22. Curr Opin Organ Transplant. 2014 Feb;19(1):14-9 - PubMed
  23. Antimicrob Agents Chemother. 1994 Jan;38(1):1-6 - PubMed
  24. Mol Neurobiol. 2018 Jul;55(7):5548-5556 - PubMed
  25. Peptides. 2014 Apr;54:140-7 - PubMed
  26. Eur J Immunol. 2013 Apr;43(4):1024-33 - PubMed
  27. Cell Metab. 2011 Apr 6;13(4):401-412 - PubMed
  28. Nat Med. 2012 Mar 06;18(3):363-74 - PubMed
  29. Front Neural Circuits. 2016 Aug 25;10:66 - PubMed
  30. Arch Med Sci. 2013 Apr 20;9(2):191-200 - PubMed
  31. Ann Rheum Dis. 2010 Sep;69(9):1687-90 - PubMed
  32. Curr Med Chem. 2012;19(32):5474-80 - PubMed
  33. Biochim Biophys Acta. 2014 Mar;1842(3):440-5 - PubMed
  34. Cell Metab. 2015 Aug 4;22(2):279-90 - PubMed
  35. Nature. 2015 Mar 12;519(7542):242-6 - PubMed
  36. Diabetologia. 2011 Jul;54(7):1841-52 - PubMed
  37. Nat Neurosci. 2012 Jul 26;15(8):1088-95 - PubMed
  38. Mol Neurobiol. 2018 Aug;55(8):6362-6368 - PubMed
  39. Pharmacol Rev. 2009 Jun;61(2):162-76 - PubMed
  40. Nutrients. 2014 Oct 28;6(11):4706-19 - PubMed
  41. Front Immunol. 2017 Jul 31;8:895 - PubMed
  42. Int Anesthesiol Clin. 2007 Spring;45(2):27-37 - PubMed
  43. Respir Physiol Neurobiol. 2010 Apr 30;171(2):122-7 - PubMed
  44. Expert Opin Investig Drugs. 2004 Mar;13(3):215-28 - PubMed
  45. Brain. 2010 May;133(Pt 5):1300-11 - PubMed
  46. Oncotarget. 2018 Apr 10;9(27):19415-19426 - PubMed
  47. Animal. 2013 Mar;7 Suppl 1:112-22 - PubMed
  48. Int J Vasc Med. 2012;2012:508416 - PubMed
  49. Nat Rev Immunol. 2015 Jun;15(6):335-49 - PubMed
  50. Front Physiol. 2017 Sep 12;8:695 - PubMed
  51. Aging (Albany NY). 2018 Feb 23;10(2):166-177 - PubMed

Publication Types