Display options
Share it on

Mol Ther Nucleic Acids. 2018 Sep 07;12:672-683. doi: 10.1016/j.omtn.2018.07.005. Epub 2018 Aug 06.

Improved Lentiviral Gene Delivery to Mouse Liver by Hydrodynamic Vector Injection through Tail Vein.

Molecular therapy. Nucleic acids

Trine Dalsgaard, Claudia R Cecchi, Anne Louise Askou, Rasmus O Bak, Pernille O Andersen, David Hougaard, Thomas G Jensen, Frederik Dagnæs-Hansen, Jacob Giehm Mikkelsen, Thomas J Corydon, Lars Aagaard

Affiliations

  1. Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
  2. Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark.
  3. Statens Serum Institut (SSI), DK-2300 Copenhagen S, Denmark.
  4. Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
  5. Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark. Electronic address: [email protected].

PMID: 30092403 PMCID: PMC6083003 DOI: 10.1016/j.omtn.2018.07.005

Abstract

Delivery of genes to mouse liver is routinely accomplished by tail-vein injections of viral vectors or naked plasmid DNA. While viral vectors are typically injected in a low-pressure and -volume fashion, uptake of naked plasmid DNA to hepatocytes is facilitated by high pressure and volumes, also known as hydrodynamic delivery. In this study, we compare the efficacy and specificity of delivery of vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentiviral vectors to mouse liver by a number of injection schemes. Exploiting in vivo bioluminescence imaging as a readout after lentiviral gene transfer, we compare delivery by (1) "conventional" tail-vein injections, (2) "primed" injections, (3) "hydrodynamic" injections, or (4) direct "intrahepatic" injections into exposed livers. Reporter gene activity demonstrate potent and targeted delivery to liver by hydrodynamic injections. Enhanced efficacy is confirmed by analysis of liver sections from mice treated with GFP-encoding vectors, demonstrating 10-fold higher transduction rates and gene delivery to ∼80% of hepatocytes after hydrodynamic vector delivery. In summary, lentiviral vector transfer to mouse liver can be strongly augmented by hydrodynamic tail-vein injections, resulting in both reduced off-target delivery and transduction of the majority of hepatocytes. Our findings pave the way for more effective use of lentiviral gene delivery in the mouse.

Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

Keywords: gene transfer; hepatocytes; high-pressure tail-vein injection; hydrodynamic delivery; in vivo; lentivirus; liver gene therapy

References

  1. Nature. 2015 Apr 9;520(7546):186-91 - PubMed
  2. Mol Ther. 2009 Mar;17(3):491-9 - PubMed
  3. Blood. 2007 Apr 1;109(7):2797-805 - PubMed
  4. Mol Genet Metab. 2012 Nov;107(3):281-93 - PubMed
  5. Gene Ther. 2009 Jan;16(1):93-102 - PubMed
  6. J Gene Med. 2011 Feb;13(2):114-22 - PubMed
  7. Transgenic Res. 2013 Aug;22(4):709-23 - PubMed
  8. Mol Ther. 2008 Apr;16(4):673-81 - PubMed
  9. World J Gastroenterol. 2016 Oct 28;22(40):8862-8868 - PubMed
  10. Gene. 1984 Dec;32(3):409-17 - PubMed
  11. Mol Ther. 2005 Jul;12(1):99-106 - PubMed
  12. J Biol Chem. 1989 Apr 5;264(10):5791-8 - PubMed
  13. Curr Protoc Neurosci. 2006 Nov;Chapter 4:Unit 4.21 - PubMed
  14. Mol Ther. 2003 Oct;8(4):654-65 - PubMed
  15. Gene Ther. 2003 Nov;10(23):1933-40 - PubMed
  16. Mol Ther. 2001 Jun;3(6):947-57 - PubMed
  17. Genetics. 1993 Aug;134(4):1205-10 - PubMed
  18. Hum Gene Ther. 2005 Mar;16(3):299-306 - PubMed
  19. Mol Ther. 2012 Oct;20(10):1863-70 - PubMed
  20. BMC Dermatol. 2011 Feb 27;11:5 - PubMed
  21. Eur J Hum Genet. 2001 Nov;9(11):815-22 - PubMed
  22. Mol Ther. 2007 Apr;15(4):732-40 - PubMed
  23. Gene Ther. 2000 Aug;7(15):1344-9 - PubMed
  24. Gene Ther. 2006 Apr;13(7):587-93 - PubMed
  25. Blood. 2014 Feb 27;123(9):1422-4 - PubMed
  26. Med Sci Monit Basic Res. 2013 Aug 14;19:214-20 - PubMed
  27. Gene Ther. 2001 Sep;8(17):1299-306 - PubMed
  28. Gene Ther. 2005 Jun;12(11):927-35 - PubMed
  29. Mol Ther. 2009 Feb;17(2):327-33 - PubMed
  30. PLoS One. 2014 Sep 24;9(9):e107203 - PubMed
  31. PLoS One. 2016 Oct 3;11(10):e0163898 - PubMed
  32. Mol Cell Biol. 1987 Aug;7(8):2745-52 - PubMed
  33. PLoS One. 2010 May 12;5(5):e10611 - PubMed
  34. Gene Ther. 1999 Jul;6(7):1258-66 - PubMed
  35. Mol Genet Metab. 2003 Apr;78(4):250-8 - PubMed
  36. Nucleic Acids Res. 1996 May 1;24(9):1787-8 - PubMed
  37. Blood. 2000 Aug 1;96(3):1173-6 - PubMed
  38. Mol Ther. 2000 Jun;1(6):522-32 - PubMed
  39. Gene Ther. 2004 Apr;11(8):675-82 - PubMed
  40. Mol Ther Methods Clin Dev. 2014 Jul 23;1:14029 - PubMed
  41. AAPS J. 2010 Dec;12(4):692-8 - PubMed
  42. Gene Ther. 2008 Mar;15(6):452-62 - PubMed
  43. Gene Ther. 2007 Jan;14(2):129-37 - PubMed
  44. Curr Gene Ther. 2013 Oct;13(5):370-81 - PubMed
  45. Gene Ther. 2007 Feb;14(4):334-43 - PubMed
  46. Biochem Biophys Res Commun. 2004 Jul 30;320(3):998-1006 - PubMed
  47. Virus Res. 2010 May;149(2):162-6 - PubMed
  48. Biol Pharm Bull. 2012;35(7):1182-6 - PubMed

Publication Types