Display options
Share it on

Nat Commun. 2018 Aug 16;9(1):3283. doi: 10.1038/s41467-018-05783-4.

Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators.

Nature communications

Eric Sage, Marc Sansa, Shawn Fostner, Martial Defoort, Marc Gély, Akshay K Naik, Robert Morel, Laurent Duraffourg, Michael L Roukes, Thomas Alava, Guillaume Jourdan, Eric Colinet, Christophe Masselon, Ariel Brenac, Sébastien Hentz

Affiliations

  1. Univ. Grenoble Alpes, CEA, LETI, 38000, Grenoble, France.
  2. Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
  3. Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, INAC-Spintec, 38000, Grenoble, France.
  4. Kavli Nanoscience Institute and Departments of Physics, Applied Physics, and Bioengineering, California Institute of Technology, MC 149-33, Pasadena, CA, 91125, USA.
  5. APIX Analytics, 7 parvis Louis Néel - CS20050, 38040, Grenoble, France.
  6. Université Grenoble-Alpes, 38000, Grenoble, France.
  7. CEA, BIG, Biologie à Grande Echelle, 38054, Grenoble, France.
  8. Inserm, Unité 1038, 38054, Grenoble, France.
  9. Univ. Grenoble Alpes, CEA, LETI, 38000, Grenoble, France. [email protected].

PMID: 30115919 PMCID: PMC6095856 DOI: 10.1038/s41467-018-05783-4

Abstract

One of the main challenges to overcome to perform nanomechanical mass spectrometry analysis in a practical time frame stems from the size mismatch between the analyte beam and the small nanomechanical detector area. We report here the demonstration of mass spectrometry with arrays of 20 multiplexed nanomechanical resonators; each resonator is designed with a distinct resonance frequency which becomes its individual address. Mass spectra of metallic aggregates in the MDa range are acquired with more than one order of magnitude improvement in analysis time compared to individual resonators. A 20 NEMS array is probed in 150 ms with the same mass limit of detection as a single resonator. Spectra acquired with a conventional time-of-flight mass spectrometer in the same system show excellent agreement. We also demonstrate how mass spectrometry imaging at the single-particle level becomes possible by mapping a 4-cm-particle beam in the MDa range and above.

References

  1. Toxicol Lett. 2002 May 10;131(1-2):5-17 - PubMed
  2. Angew Chem Int Ed Engl. 2013 Apr 2;52(14):4020-3 - PubMed
  3. Nanotechnology. 2010 Apr 23;21(16):165504 - PubMed
  4. Nat Commun. 2016 Nov 11;7:13452 - PubMed
  5. Nature. 2007 Dec 13;450(7172):973-82 - PubMed
  6. Curr Opin Struct Biol. 2006 Apr;16(2):245-51 - PubMed
  7. Nat Nanotechnol. 2016 Jun;11(6):552-8 - PubMed
  8. Nat Nanotechnol. 2012 Sep;7(9):602-8 - PubMed
  9. Rapid Commun Mass Spectrom. 2014 Mar 15;28(5):483-8 - PubMed
  10. Nano Lett. 2005 May;5(5):925-9 - PubMed
  11. Anal Chem. 2014 Jan 7;86(1):321-5 - PubMed
  12. Cancer Res. 2016 Oct 1;76(19):5647-5656 - PubMed
  13. Angew Chem Int Ed Engl. 2016 Feb 12;55(7):2340-4 - PubMed
  14. Nat Nanotechnol. 2012 Apr 01;7(5):301-4 - PubMed
  15. Nat Commun. 2015 Mar 10;6:6482 - PubMed
  16. J Am Soc Mass Spectrom. 2010 Jun;21(6):971-8 - PubMed
  17. Nano Lett. 2012 Mar 14;12(3):1269-74 - PubMed

Publication Types

Grant support