Display options
Share it on

Neurophotonics. 2018 Jul;5(3):035001. doi: 10.1117/1.NPh.5.3.035001. Epub 2018 Jul 12.

FNIRS activity in the prefrontal cortex and motivational intensity: impact of working memory load, financial reward, and correlation-based signal improvement.

Neurophotonics

Stephen H Fairclough, Christopher Burns, Ute Kreplin

Affiliations

  1. Liverpool John Moores University, School of Natural Sciences and Psychology, Liverpool, Merseyside, United Kingdom.
  2. University of Warwick, Warwick Manufacturing Group, Experiential Engineering, Coventry, United Kingdom.
  3. Massey University, School of Psychology, Auckland, New Zealand.

PMID: 30035151 PMCID: PMC6041856 DOI: 10.1117/1.NPh.5.3.035001

Abstract

Previous research has demonstrated changes in neurovascular activation of the prefrontal cortex to increased working memory load. The primary purpose of the current paper was to investigate overload of working memory capacity using functional near-infrared spectroscopy (fNIRS) within the framework of motivational intensity theory. A secondary goal was to explore the influence of the correlation-based signal improvement (CBSI) as a method for correcting the influence of systemic variables. In study one, 30 participants (15 female, mean age = 21.09 years, s.d. = 2.9 years) performed a verbal version of the

Keywords: functional near-infrared spectroscopy; motivation; prefrontal cortex; reward; signal processing; working memory

References

  1. Ergonomics. 1996 Apr;39(4):661-76 - PubMed
  2. Nat Rev Neurosci. 2004 Mar;5(3):184-94 - PubMed
  3. Psychophysiology. 2009 May;46(3):451-7 - PubMed
  4. Behav Brain Res. 2015 Oct 1;292:167-73 - PubMed
  5. Neuroimage. 2012 Nov 1;63(2):921-35 - PubMed
  6. Neuroimage. 2012 May 15;61(1):70-81 - PubMed
  7. Biomed Opt Express. 2017 Jul 25;8(8):3842-3855 - PubMed
  8. Magn Reson Med. 1998 Jun;39(6):855-64 - PubMed
  9. Sci Rep. 2016 Feb 24;6:20978 - PubMed
  10. Behav Brain Res. 2014 Feb 1;259:16-23 - PubMed
  11. Neuroimage. 2013 Feb 1;66:71-9 - PubMed
  12. Front Hum Neurosci. 2013 Dec 18;7:871 - PubMed
  13. Neuroimage. 2010 Feb 15;49(4):3039-46 - PubMed
  14. Psychophysiology. 2008 Sep;45(5):869-75 - PubMed
  15. PLoS One. 2013 Aug 01;8(8):e66319 - PubMed
  16. Annu Rev Psychol. 1989;40:109-31 - PubMed
  17. J Innov Opt Health Sci. 2014 Mar 1;7(2):null - PubMed
  18. Front Hum Neurosci. 2018 Jan 08;11:641 - PubMed
  19. Phys Med Biol. 2010 Jul 7;55(13):3701-24 - PubMed
  20. Front Hum Neurosci. 2017 Sep 15;11:456 - PubMed
  21. Neuroimage. 2014 Jul 15;95:69-79 - PubMed
  22. Front Hum Neurosci. 2014 Jan 16;7:935 - PubMed
  23. Front Hum Neurosci. 2014 Feb 20;8:76 - PubMed
  24. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6567-70 - PubMed
  25. Psychophysiology. 2004 Jul;41(4):521-30 - PubMed
  26. Neuroimage. 2014 Jan 15;85 Pt 1:6-27 - PubMed
  27. Int J Psychophysiol. 2017 Sep;119:58-66 - PubMed
  28. PLoS One. 2012;7(11):e50271 - PubMed
  29. J Neural Eng. 2014 Oct;11(5):056010 - PubMed
  30. Neuroimage. 2012 Jan 2;59(1):36-47 - PubMed
  31. Neurophotonics. 2017 Oct;4(4):041504 - PubMed
  32. Neuroimage. 2014 Jan 15;85 Pt 1:181-91 - PubMed
  33. Neurophotonics. 2018 Jan;5(1):011002 - PubMed
  34. Neurosci Lett. 2014 Sep 19;580:130-6 - PubMed
  35. Front Hum Neurosci. 2013 Dec 17;7:864 - PubMed
  36. Front Hum Neurosci. 2016 Jun 09;10:261 - PubMed
  37. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:4024-7 - PubMed
  38. Neurophotonics. 2016 Jul;3(3):031405 - PubMed
  39. Hum Brain Mapp. 2005 May;25(1):46-59 - PubMed
  40. Psychophysiology. 1993 Nov;30(6):589-604 - PubMed

Publication Types