Display options
Share it on

AMB Express. 2018 Aug 10;8(1):130. doi: 10.1186/s13568-018-0657-5.

Lipids modulate acetic acid and thiol final concentrations in wine during fermentation by Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids.

AMB Express

Amandine Deroite, Jean-Luc Legras, Peggy Rigou, Anne Ortiz-Julien, Sylvie Dequin

Affiliations

  1. Lallemand SAS, 31700, Blagnac, France.
  2. SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.
  3. SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. [email protected].

PMID: 30097818 PMCID: PMC6086921 DOI: 10.1186/s13568-018-0657-5

Abstract

Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids are typically used for white wine fermentation because of their cryotolerance. One group of these hybrids presents a unique ability to release thiol varietal aroma products as well as excessive amounts of acetic acid under specific conditions, which is detrimental for wine organoleptic quality. The aim of this work is to better assess the effects of lipids, sugar concentrations and temperature on the production of acetic acid and thiols during wine fermentation. To this end, we used a Box-Behnken experimental design and response surface modeling on the production of acetic acid and thiols in S. cerevisiae × S. kudriavzevii hybrids from the Eg8 family during fermentation of a synthetic must. We showed that these hybrids produced lower levels of acetic acid when the initial lipid concentration was increased, whereas they produced greater levels when the initial sugar concentration was high. Moreover, we found that lipids had a positive impact on the final concentrations of 4-methyl-4-mercaptopentan-2-one and 3-mercaptohexan-1-ol (3MH), giving box tree and citrus flavors, respectively. The increase of 3MH was concomitant with a decrease of 3-mercaptohexyl acetate (3MHA) characterized by a passion fruit aroma, indicating that lipid addition reduces the rate of 3MH acetylation into 3MHA. These results highlight the key role of lipid management in acetic acid metabolism and thiol release by S. cerevisiae × S. kudriavzevii hybrids and underline its technological interest in alcoholic fermentation to avoid the overproduction of volatile acidity while favoring the release of volatile thiols.

Keywords: Acetic acid; Box–Behnken experimental design; Lipids; Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids; Thiols; Wine fermentation

References

  1. Can J Microbiol. 2004 Sep;50(9):669-74 - PubMed
  2. Appl Microbiol Biotechnol. 2015 Mar;99(5):2291-304 - PubMed
  3. J Bacteriol. 2001 Feb;183(4):1441-51 - PubMed
  4. Biochem Biophys Res Commun. 2010 Jun 25;397(2):307-10 - PubMed
  5. Mol Biol Evol. 2018 Jul 1;35(7):1712-1727 - PubMed
  6. Microbiology. 1994 Mar;140 ( Pt 3):601-10 - PubMed
  7. Biochem Z. 1957;329(3):175-91 - PubMed
  8. Appl Environ Microbiol. 2012 May;78(9):3256-65 - PubMed
  9. Food Chem. 2012 Dec 15;135(4):2863-71 - PubMed
  10. Yeast. 1996 Mar 15;12(3):247-57 - PubMed
  11. Int J Food Microbiol. 2008 Jan 31;121(2):169-77 - PubMed
  12. Appl Environ Microbiol. 1997 Mar;63(3):910-5 - PubMed
  13. FEMS Microbiol Lett. 2004 Nov 15;240(2):125-9 - PubMed
  14. J Chromatogr A. 2016 Oct 14;1468:154-163 - PubMed
  15. Chem Rev. 2011 Nov 9;111(11):7355-76 - PubMed
  16. Appl Environ Microbiol. 2011 Apr;77(7):2292-302 - PubMed
  17. Nature. 2009 Mar 19;458(7236):337-41 - PubMed
  18. FEMS Yeast Res. 2008 Aug;8(5):771-80 - PubMed
  19. PLoS One. 2013 Apr 26;8(4):e61645 - PubMed
  20. Appl Environ Microbiol. 2005 Sep;71(9):5420-6 - PubMed
  21. Microbiology. 2003 Sep;149(Pt 9):2669-78 - PubMed
  22. FEMS Yeast Res. 2003 Jun;3(4):375-99 - PubMed
  23. Appl Environ Microbiol. 2011 Jun;77(11):3626-32 - PubMed
  24. FEMS Microbiol Rev. 2008 Jul;32(4):673-704 - PubMed
  25. Yeast. 2018 Jan;35(1):51-69 - PubMed
  26. CRC Crit Rev Microbiol. 1978;6(4):301-41 - PubMed
  27. Food Res Int. 2017 Aug;98:87-94 - PubMed
  28. Appl Environ Microbiol. 2003 Sep;69(9):5228-37 - PubMed
  29. Int J Food Microbiol. 2008 Feb 29;122(1-2):188-95 - PubMed
  30. Appl Environ Microbiol. 2008 Apr;74(7):2144-52 - PubMed
  31. Appl Microbiol Biotechnol. 2004 Jul;65(1):25-32 - PubMed
  32. Food Microbiol. 2011 Aug;28(5):926-35 - PubMed
  33. J Agric Food Chem. 2010 Apr 14;58(7):4406-13 - PubMed
  34. Microbiology. 2004 Jul;150(Pt 7):2209-20 - PubMed
  35. FEMS Yeast Res. 2015 Nov;15(7):null - PubMed
  36. Appl Microbiol Biotechnol. 2007 Apr;74(5):954-60 - PubMed
  37. Int J Food Microbiol. 2006 May 1;108(3):385-90 - PubMed
  38. FEMS Yeast Res. 2008 Nov;8(7):1076-86 - PubMed
  39. Int J Food Microbiol. 2010 Jul 15;141(3):229-35 - PubMed
  40. Mol Ecol. 2007 May;16(10):2091-102 - PubMed
  41. Nature. 2018 Apr;556(7701):339-344 - PubMed
  42. PLoS Genet. 2011 Jun;7(6):e1002111 - PubMed
  43. Eur J Biochem. 1995 Aug 1;231(3):704-13 - PubMed
  44. Anal Chim Acta. 2014 Apr 22;821:48-53 - PubMed
  45. Appl Environ Microbiol. 2000 Aug;66(8):3151-9 - PubMed

Publication Types