Display options
Share it on

Sci Adv. 2018 Aug 24;4(8):eaat2355. doi: 10.1126/sciadv.aat2355. eCollection 2018 Aug.

Experimental realization of deep-subwavelength confinement in dielectric optical resonators.

Science advances

Shuren Hu, Marwan Khater, Rafael Salas-Montiel, Ernst Kratschmer, Sebastian Engelmann, William M J Green, Sharon M Weiss

Affiliations

  1. Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA.
  2. IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA.
  3. Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay CNRS-UMR 6281, Université de Technologie de Troyes, Troyes 10004, France.
  4. Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.

PMID: 30151424 PMCID: PMC6108564 DOI: 10.1126/sciadv.aat2355

Abstract

The ability to highly localize light with strong electric field enhancement is critical for enabling higher-efficiency solar cells, light sources, and modulators. While deep-subwavelength modes can be realized with plasmonic resonators, large losses in these metal structures preclude most practical applications. We developed an alternative approach to achieving subwavelength localization of the electric and displacement fields that is not accompanied by inhibitive losses. We experimentally demonstrate a dielectric bowtie photonic crystal structure that supports mode volumes commensurate with plasmonic elements and quality factors that reveal ultralow losses. Our approach opens the door to the extremely strong light-matter interaction regime with, simultaneously incorporating both an ultralow mode volume and an ultrahigh quality factor, that had remained elusive in optical resonators.

References

  1. Nano Lett. 2013 Mar 13;13(3):1000-6 - PubMed
  2. Nature. 2014 Apr 10;508(7495):241-4 - PubMed
  3. Nat Mater. 2014 May;13(5):451-60 - PubMed
  4. Opt Express. 2012 Nov 19;20(24):26411-23 - PubMed
  5. Opt Express. 2011 Sep 12;19(19):18529-42 - PubMed
  6. Science. 2016 Nov 18;354(6314):847-850 - PubMed
  7. Nature. 2005 May 19;435(7040):325-7 - PubMed
  8. Nat Mater. 2010 Mar;9(3):205-13 - PubMed
  9. Nano Lett. 2015 Jun 10;15(6):4102-7 - PubMed
  10. Opt Express. 2013 Dec 30;21(26):32468-83 - PubMed
  11. Phys Rev Lett. 2017 Jun 2;118(22):223605 - PubMed
  12. Nature. 2009 Oct 1;461(7264):629-32 - PubMed
  13. Nat Mater. 2010 Mar;9(3):193-204 - PubMed
  14. Nano Lett. 2015 Feb 11;15(2):849-56 - PubMed
  15. Opt Express. 2010 Jul 19;18(15):15859-69 - PubMed
  16. Nano Lett. 2015 Dec 9;15(12):8148-54 - PubMed
  17. Nature. 2003 Oct 30;425(6961):944-7 - PubMed
  18. Science. 2015 May 1;348(6234):516-21 - PubMed
  19. Nano Lett. 2016 Aug 10;16(8):5143-51 - PubMed
  20. ACS Nano. 2015 Mar 24;9(3):2968-80 - PubMed
  21. Science. 2016 Jan 22;351(6271):334-5 - PubMed
  22. Nano Lett. 2015 Mar 11;15(3):2137-42 - PubMed

Publication Types