Display options
Share it on

Light Sci Appl. 2017 Nov 17;6(11):e17100. doi: 10.1038/lsa.2017.100. eCollection 2017 Nov.

Integrated sources of photon quantum states based on nonlinear optics.

Light, science & applications

Lucia Caspani, Chunle Xiong, Benjamin J Eggleton, Daniele Bajoni, Marco Liscidini, Matteo Galli, Roberto Morandotti, David J Moss

Affiliations

  1. Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow G1 1RD, UK.
  2. Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
  3. Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, Sydney, NSW 2006, Australia.
  4. Dipartimento di Ingegneria Industriale e dell'Informazione, Università di Pavia, via Ferrata 1, 27100, Pavia, Italy.
  5. Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100 Pavia, Italy.
  6. INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
  7. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
  8. National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia.
  9. Center for Microphotonics, Swinburne University of Technology, Hawthorn, Victoria, 3122 Australia.

PMID: 30167217 PMCID: PMC6062040 DOI: 10.1038/lsa.2017.100

Abstract

The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum technologies. These include quantum communications, computation, imaging, microscopy and many other novel technologies that are constantly being proposed. However, approaches to generating parallel multiple, customisable bi- and multi-entangled quantum bits (qubits) on a chip are still in the early stages of development. Here, we review recent advances in the realisation of integrated sources of photonic quantum states, focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory platforms as well as with chip-scale semiconductor technology. These new and exciting platforms hold the promise of compact, low-cost, scalable and practical implementations of sources for the generation and manipulation of complex quantum optical states on a chip, which will play a major role in bringing quantum technologies out of the laboratory and into the real world.

Keywords: entanglement; integrated optics; nonlinear optics; photon pairs; quantum optics; quantum states

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Phys Rev Lett. 2012 Apr 13;108(15):153605 - PubMed
  2. Nat Commun. 2013;4:1356 - PubMed
  3. Opt Express. 2013 Apr 8;21(7):8596-604 - PubMed
  4. Opt Lett. 2006 Nov 1;31(21):3140-2 - PubMed
  5. Opt Lett. 2016 Jan 15;41(2):223-6 - PubMed
  6. Phys Rev Lett. 1991 Aug 5;67(6):661-663 - PubMed
  7. Nat Commun. 2013;4:2582 - PubMed
  8. Opt Express. 2009 Aug 3;17(16):14098-103 - PubMed
  9. Sci Rep. 2012;2:817 - PubMed
  10. Opt Express. 2014 Mar 24;22(6):6535-46 - PubMed
  11. Science. 2010 Sep 17;329(5998):1500-3 - PubMed
  12. Sci Rep. 2013;3:1901 - PubMed
  13. Opt Express. 2007 Feb 19;15(4):1679-83 - PubMed
  14. Science. 2008 May 2;320(5876):646-9 - PubMed
  15. Opt Express. 2009 Aug 3;17(16):13516-25 - PubMed
  16. Nature. 2001 Jan 4;409(6816):46-52 - PubMed
  17. Opt Express. 2016 Feb 22;24(4):3313-28 - PubMed
  18. Phys Rev Lett. 2012 Jan 13;108(2):023601 - PubMed
  19. Nature. 2005 Mar 10;434(7030):169-76 - PubMed
  20. Science. 2007 Dec 7;318(5856):1567-70 - PubMed
  21. Sci Rep. 2015 Jun 10;5:10941 - PubMed
  22. Phys Rev Lett. 2007 Feb 9;98(6):060503 - PubMed
  23. Nature. 2010 Mar 4;464(7285):45-53 - PubMed
  24. Nature. 2001 Jul 19;412(6844):313-6 - PubMed
  25. Phys Rev Lett. 2012 Feb 24;108(8):083601 - PubMed
  26. Opt Express. 2009 Sep 14;17(19):16558-70 - PubMed
  27. Science. 2004 Nov 19;306(5700):1330-6 - PubMed
  28. Opt Express. 2012 Oct 8;20(21):23846-55 - PubMed
  29. Opt Lett. 2010 Sep 15;35(18):3006-8 - PubMed
  30. Opt Lett. 2016 Sep 15;41(18):4194-7 - PubMed
  31. Phys Rev Lett. 2012 Feb 3;108(5):053601 - PubMed
  32. Phys Rev Lett. 2008 Apr 4;100(13):133601 - PubMed
  33. Science. 2009 Sep 4;325(5945):1221 - PubMed
  34. Sci Rep. 2014 Jan 28;4:3913 - PubMed
  35. Opt Lett. 2011 Sep 1;36(17):3413-5 - PubMed
  36. Nature. 2003 Feb 27;421(6926):925-8 - PubMed
  37. Phys Rev Lett. 2016 Jan 15;116(2):020401 - PubMed
  38. Phys Rev Lett. 2014 Aug 22;113(8):083602 - PubMed
  39. Opt Express. 2016 Dec 12;24(25):28731-28738 - PubMed
  40. Opt Lett. 2013 Mar 1;38(5):649-51 - PubMed
  41. Opt Express. 2013 Jun 3;21(11):13333-41 - PubMed
  42. Opt Express. 2013 Nov 18;21(23):27981-91 - PubMed
  43. Sci Rep. 2013 Nov 04;3:3087 - PubMed
  44. Opt Express. 2007 Oct 1;15(20):12769-76 - PubMed
  45. Phys Rev Lett. 2013 Apr 19;110(16):160502 - PubMed
  46. Sci Rep. 2016 Apr 01;6:23564 - PubMed
  47. Opt Express. 2008 Apr 14;16(8):5721-7 - PubMed
  48. Phys Rev Lett. 2001 May 28;86(22):5188-91 - PubMed
  49. Phys Rev Lett. 2014 Apr 11;112(14):143604 - PubMed
  50. Nat Commun. 2011 Nov 29;2:566 - PubMed
  51. Opt Lett. 2011 Aug 1;36(15):2964-6 - PubMed
  52. Opt Express. 2013 Sep 23;21(19):22657-70 - PubMed
  53. Phys Rev Lett. 2001 Jan 29;86(5):910-3 - PubMed
  54. Opt Express. 2011 Jan 17;19(2):1470-83 - PubMed
  55. Opt Express. 2016 Feb 8;24(3):2836-49 - PubMed
  56. Opt Lett. 2013 Aug 15;38(16):2969-71 - PubMed
  57. Phys Rev Lett. 2011 Mar 18;106(11):113901 - PubMed
  58. Opt Express. 2013 May 6;21(9):10841-9 - PubMed
  59. Science. 2016 Mar 11;351(6278):1176-80 - PubMed
  60. Opt Express. 2014 Sep 22;22(19):22831-40 - PubMed
  61. Opt Express. 2015 Aug 10;23(16):20884-904 - PubMed
  62. Nat Commun. 2015 Sep 14;6:8236 - PubMed
  63. Opt Express. 2016 Jun 27;24(13):13931-8 - PubMed
  64. Sci Rep. 2015 Jun 10;5:11223 - PubMed
  65. Opt Express. 2016 Feb 22;24(4):3365-76 - PubMed
  66. Phys Rev Lett. 1989 May 8;62(19):2205-2208 - PubMed
  67. Nat Commun. 2016 Mar 21;7:10853 - PubMed
  68. Opt Express. 2013 Nov 18;21(23):27826-34 - PubMed
  69. Phys Rev Lett. 2014 Sep 5;113(10):103601 - PubMed
  70. Opt Lett. 2016 Feb 15;41(4):788-91 - PubMed
  71. Phys Rev Lett. 2006 Oct 27;97(17):173901 - PubMed
  72. Phys Rev Lett. 2012 Jan 6;108(1):010502 - PubMed
  73. Phys Rev Lett. 2015 Dec 18;115(25):250402 - PubMed
  74. Phys Rev Lett. 2015 Dec 18;115(25):250401 - PubMed
  75. Opt Express. 2006 Dec 11;14(25):12388-93 - PubMed
  76. Nature. 2003 Oct 30;425(6961):944-7 - PubMed
  77. Opt Lett. 2014 Sep 1;39(17):5188-91 - PubMed
  78. Science. 2013 Feb 15;339(6121):794-8 - PubMed
  79. Phys Rev Lett. 2014 Sep 12;113(11):113602 - PubMed
  80. Phys Rev Lett. 2005 Dec 9;95(24):243603 - PubMed
  81. Phys Rev Lett. 2011 Jul 15;107(3):030505 - PubMed
  82. Science. 2013 Feb 15;339(6121):798-801 - PubMed
  83. Opt Express. 2015 Jan 26;23(2):1103-13 - PubMed
  84. Phys Rev Lett. 2008 May 2;100(17):170506 - PubMed
  85. Sci Rep. 2013;3:2314 - PubMed
  86. Nat Commun. 2015 Aug 06;6:7948 - PubMed
  87. Opt Lett. 2012 Sep 15;37(18):3807-9 - PubMed
  88. Opt Express. 2009 Jul 20;17(15):12546-54 - PubMed
  89. Phys Rev Lett. 1987 Nov 2;59(18):2044-2046 - PubMed
  90. Opt Express. 2015 Jul 27;23(15):19318-27 - PubMed
  91. Opt Express. 2008 Jul 21;16(15):11095-102 - PubMed
  92. Opt Express. 2010 Dec 20;18(26):27627-38 - PubMed

Publication Types