Display options
Share it on

Light Sci Appl. 2017 Jul 28;6(7):e17016. doi: 10.1038/lsa.2017.16. eCollection 2017 Jul.

Beam switching and bifocal zoom lensing using active plasmonic metasurfaces.

Light, science & applications

Xinghui Yin, Tobias Steinle, Lingling Huang, Thomas Taubner, Matthias Wuttig, Thomas Zentgraf, Harald Giessen

Affiliations

  1. 4th Physics Institute and Research Center SCoPE, University of Stuttgart, 70550 Stuttgart, Germany.
  2. Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
  3. Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China.
  4. I. Institute of Physics (IA), RWTH Aachen University, 52056 Aachen, Germany.
  5. Department of Physics, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.

PMID: 30167272 PMCID: PMC6062225 DOI: 10.1038/lsa.2017.16

Abstract

Compact nanophotonic elements exhibiting adaptable properties are essential components for the miniaturization of powerful optical technologies such as adaptive optics and spatial light modulators. While the larger counterparts typically rely on mechanical actuation, this can be undesirable in some cases on a microscopic scale due to inherent space restrictions. Here, we present a novel design concept for highly integrated active optical components that employs a combination of resonant plasmonic metasurfaces and the phase-change material Ge

Keywords: active; beam-forming; metasurfaces; phase-change material; plasmonics

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Adv Mater. 2015 Aug 19;27(31):4597-603 - PubMed
  2. Opt Express. 2009 Sep 28;17(20):18330-9 - PubMed
  3. Opt Express. 2013 Jun 3;21(11):13691-8 - PubMed
  4. Opt Express. 2010 Apr 12;18(8):8353-9 - PubMed
  5. Nano Lett. 2012 Sep 12;12(9):4932-6 - PubMed
  6. Science. 2013 Mar 15;339(6125):1232009 - PubMed
  7. Phys Rev Lett. 2007 Apr 13;98(15):153905 - PubMed
  8. Nano Lett. 2015 Dec 9;15(12):7949-55 - PubMed
  9. Phys Rev Lett. 2009 Oct 2;103(14):147401 - PubMed
  10. Adv Mater. 2013 Jun 11;25(22):3050-4 - PubMed
  11. Phys Rev Lett. 2006 Mar 17;96(10):107401 - PubMed
  12. Opt Express. 2005 Dec 26;13(26):10673-80 - PubMed
  13. Science. 2014 Jul 18;345(6194):298-302 - PubMed
  14. Nature. 2006 Nov 30;444(7119):597-600 - PubMed
  15. Nano Lett. 2015 Jul 8;15(7):4255-60 - PubMed
  16. Nat Mater. 2008 Aug;7(8):653-8 - PubMed
  17. Opt Express. 2015 Sep 7;23(18):23960-7 - PubMed
  18. Science. 2015 Jul 10;349(6244):165-8 - PubMed
  19. Nature. 2014 Jul 10;511(7508):206-11 - PubMed
  20. Nat Commun. 2012;3:1198 - PubMed
  21. Nano Lett. 2013 Mar 13;13(3):1257-64 - PubMed
  22. Science. 2011 Oct 21;334(6054):333-7 - PubMed
  23. Nano Lett. 2014 Jan 8;14(1):225-30 - PubMed
  24. Opt Lett. 2013 Feb 1;38(3):368-70 - PubMed
  25. Science. 2016 Jun 3;352(6290):1190-4 - PubMed
  26. Nano Lett. 2012 Feb 8;12(2):1026-31 - PubMed
  27. Nano Lett. 2012 Nov 14;12(11):5750-5 - PubMed
  28. Nano Lett. 2012 Aug 8;12(8):4324-8 - PubMed
  29. Opt Express. 2014 Oct 20;22(21):26212-21 - PubMed
  30. Nat Nanotechnol. 2015 Nov;10(11):937-43 - PubMed
  31. Nat Mater. 2014 Feb;13(2):139-50 - PubMed
  32. Nano Lett. 2014 Mar 12;14(3):1140-7 - PubMed
  33. Nano Lett. 2014 Jan 8;14(1):299-304 - PubMed
  34. Nat Mater. 2011 May;10(5):361-6 - PubMed
  35. Nano Lett. 2013 Aug 14;13(8):3470-5 - PubMed

Publication Types