Display options
Share it on

Cureus. 2018 Jul 01;10(7):e2903. doi: 10.7759/cureus.2903.

Effect of Albumin Polymorphism on Thyroid Hormones: A Case Report and Literature Review.

Cureus

Rupak Mahendhar, Amir Shahbaz, Maria Riaz, Michael Aninyei, David M Reich, Issac Sachmechi

Affiliations

  1. Internal Medicine, Icahn School of Medicine, Mount Sinai/Queens Hospital Center, New York, USA.
  2. Internal Medicine, Icahn School of Medicine at Mount Sinai/Queen Hospital Center, New York, USA.
  3. Internal Medicine, Icahn School of Medicine at Mount Sinai/Queens Hospital Center, New York, USA.
  4. Geriatrics, James H, Johnson City, USA.
  5. Medicine, Icahn School of Medicine, Jamaica, USA.

PMID: 30197844 PMCID: PMC6126704 DOI: 10.7759/cureus.2903

Abstract

Familial dysalbuminemic hyperthyroxinemia (FDH) is the most common cause of the inherited increase of serum thyroxine in Caucasians. This disorder occurs due to a missense mutation in the human serum albumin, resulting in an increased affinity of thyroxine to the binding sites on the human serum albumin (HSA) molecule. HSA is a carrier protein of thyroid hormones and only 10% of thyroxine (T4) is bound to human serum albumin, 75% is bound to thyroxine-binding globulin, 15% to transthyretin, and 0.03% is free. The disorder is characterized by a greater elevation of serum thyroxine than triiodothyronine (T3). The high serum concentration of T4 is due to the modification of a binding site located in the N-terminal half of HSA (in subdomain IIA). Arg218 or Arg222 gets replaced with smaller amino acids, such as histidine, proline, or serine, due to missense mutation; this reduces the steric hindrances in the binding site and creates a high-affinity binding site for thyroxine. We herein report a case of FDH with a characteristically elevated total T4 and normal free T4 (measured by equilibrium dialysis).

Keywords: arginine; familial dysalbuminemic hyperthyroxinemia; human serum albumin; thyroxine

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Best Pract Res Clin Endocrinol Metab. 2009 Oct;23(5):597-606 - PubMed
  2. Biochem Biophys Res Commun. 1994 Jul 29;202(2):781-7 - PubMed
  3. J Clin Endocrinol Metab. 1979 Aug;49(2):292-9 - PubMed
  4. Eur J Endocrinol. 1995 Dec;133(6):729-31 - PubMed
  5. J Pediatr Endocrinol Metab. 2015 Jan;28(1-2):241-5 - PubMed
  6. Ann Lab Med. 2017 Jan;37(1):63-65 - PubMed
  7. J Med Genet. 1994 May;31(5):355-9 - PubMed
  8. J Clin Endocrinol Metab. 1990 Jul;71(1):98-104 - PubMed
  9. J Clin Endocrinol Metab. 1981 Aug;53(2):353-9 - PubMed
  10. Photochem Photobiol. 1993 Mar;57(3):416-9 - PubMed
  11. Clin Endocrinol (Oxf). 1981 Sep;15(3):313-8 - PubMed
  12. J Clin Invest. 1987 Aug;80(2):522-34 - PubMed
  13. Best Pract Res Clin Endocrinol Metab. 2015 Aug;29(4):647-57 - PubMed
  14. Lancet. 1979 Mar 24;1(8117):639-42 - PubMed
  15. Ann Intern Med. 1982 Dec;97(6):865-6 - PubMed
  16. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6440-5 - PubMed
  17. Front Endocrinol (Lausanne). 2017 Nov 01;8:297 - PubMed
  18. Thyroid. 2004 Feb;14(2):155-60 - PubMed
  19. J Clin Endocrinol Metab. 2014 Jul;99(7):E1381-6 - PubMed
  20. J Clin Endocrinol Metab. 1998 May;83(5):1448-54 - PubMed

Publication Types