Display options
Share it on

Ecol Evol. 2016 Oct 05;6(21):7706-7716. doi: 10.1002/ece3.2493. eCollection 2016 Nov.

Sequencing improves our ability to study threatened migratory species: Genetic population assignment in California's Central Valley Chinook salmon.

Ecology and evolution

Mariah H Meek, Melinda R Baerwald, Molly R Stephens, Alisha Goodbla, Michael R Miller, Katharine M H Tomalty, Bernie May

Affiliations

  1. Department of Natural Resources Cornell University Ithaca NY USA.
  2. Department of Animal Science University of California Davis Davis CA USA.
  3. School of Natural Science University of California, Merced Merced CA USA.

PMID: 30128122 PMCID: PMC6093154 DOI: 10.1002/ece3.2493

Abstract

Effective conservation and management of migratory species requires accurate identification of unique populations, even as they mix along their migratory corridors. While telemetry has historically been used to study migratory animal movement and habitat use patterns, genomic tools are emerging as a superior alternative in many ways, allowing large-scale application at reduced costs. Here, we demonstrate the usefulness of genomic resources for identifying single-nucleotide polymorphisms (SNPs) that allow fast and accurate identification of the imperiled Chinook salmon in the Great Central Valley of California. We show that 80 well-chosen loci, drawn from a pool of over 11,500 SNPs developed from restriction site-associated DNA sequencing, can accurately identify Chinook salmon runs and select populations within run. No other SNP panel for Central Valley Chinook salmon has been able to achieve the high accuracy of assignment we show here. This panel will greatly improve our ability to study and manage this ecologically, economically, and socially important species and demonstrates the great utility of using genomics to study migratory species.

Keywords: Central Valley; RAD‐sequencing; fish; genetic stock identification; linkage map; management

References

  1. Mol Ecol Resour. 2011 Mar;11 Suppl 1:50-66 - PubMed
  2. PLoS Biol. 2008 Jul 29;6(7):e188 - PubMed
  3. G3 (Bethesda). 2013 Dec 09;3(12):2289-95 - PubMed
  4. Mol Ecol Resour. 2008 Jan;8(1):103-6 - PubMed
  5. G3 (Bethesda). 2014 Mar 20;4(3):447-60 - PubMed
  6. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6564-8 - PubMed
  7. Science. 1998 Dec 4;282(5395):1884-6 - PubMed
  8. Mol Ecol Resour. 2010 Jul;10(4):701-10 - PubMed
  9. Mol Ecol Resour. 2012 Jul;12(4):653-60 - PubMed
  10. Am J Hum Genet. 2003 Dec;73(6):1402-22 - PubMed
  11. Genome Biol. 2011 Nov 08;12(11):R112 - PubMed
  12. PLoS One. 2008;3(10):e3376 - PubMed
  13. J Comput Biol. 2000 Feb-Apr;7(1-2):203-14 - PubMed
  14. Mol Ecol. 2008 Aug;17(15):3464-77 - PubMed
  15. Mol Ecol. 2015 Nov;24(22):5573-95 - PubMed
  16. Mol Ecol. 2014 Dec;23(23):5726-39 - PubMed
  17. Genome Biol. 2009;10(3):R25 - PubMed
  18. Ecol Evol. 2016 Oct 05;6(21):7706-7716 - PubMed
  19. Mol Ecol Resour. 2016 May;16(3):769-83 - PubMed
  20. Mol Ecol Resour. 2011 Mar;11 Suppl 1:150-61 - PubMed
  21. Science. 2005 Oct 7;310(5745):100-3 - PubMed
  22. Biol Lett. 2006 Mar 22;2(1):148-51 - PubMed
  23. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2303-12 - PubMed
  24. Am J Hum Genet. 2006 Apr;78(4):680-90 - PubMed
  25. Nat Rev Genet. 2011 Jun 17;12(7):499-510 - PubMed
  26. Mol Ecol. 2012 Jan;21(2):237-49 - PubMed
  27. Nature. 2010 Jun 3;465(7298):609-12 - PubMed
  28. Mol Ecol Resour. 2015 Jan;15(1):187-202 - PubMed
  29. J Hered. 2008 Sep-Oct;99(5):483-90 - PubMed
  30. Science. 2005 Jan 14;307(5707):249-50 - PubMed
  31. Genome Res. 2007 Feb;17(2):240-8 - PubMed

Publication Types

Grant support