Display options
Share it on

J Mol Model. 2018 Aug 29;24(9):258. doi: 10.1007/s00894-018-3796-3.

Co-operativity in non-covalent interactions in ternary complexes: a comprehensive electronic structure theory based investigation.

Journal of molecular modeling

Shyam Vinod Kumar Panneer, Mahesh Kumar Ravva, Brijesh Kumar Mishra, Venkatesan Subramanian, Narayanasami Sathyamurthy

Affiliations

  1. Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
  2. Department of Chemistry, SRM University - AP, Amaravati, 522502, India.
  3. Indian Institute of Information Technology, Bangalore, 560100, India.
  4. Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India. [email protected].
  5. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.

PMID: 30159795 DOI: 10.1007/s00894-018-3796-3

Abstract

The structure and stability of various ternary complexes in which an extended aromatic system such as coronene interacts with ions/atoms/molecules on opposite faces of the π-electron cloud were investigated using ab initio calculations. By characterizing the nature of the intermolecular interactions using an energy decomposition analysis, it was shown that there is an interplay between various types of interactions and that there are co-operativity effects, particularly when different types of interactions coexist in the same system. Graphical abstract Weak OH-π, π-π and van der Waals-π ternary systems are stabilized through dispersion interactions. Cation-π ternary systems are stabilized by through-space electrostatic interactions.

Keywords: Coronene; DFT; Non-covalent interactions; QTAIM; SAPT; Ternary complexes

References

  1. Chem Rev. 2013 Mar 13;113(3):2100-38 - PubMed
  2. J Phys Chem A. 2007 Mar 22;111(11):2139-47 - PubMed
  3. J Phys Chem A. 2009 Apr 23;113(16):3744-9 - PubMed
  4. J Phys Chem B. 2015 Aug 27;119(34):11121-35 - PubMed
  5. J Phys Chem A. 2011 Oct 20;115(41):11387-93 - PubMed
  6. J Chem Phys. 2006 Nov 28;125(20):204707 - PubMed
  7. J Phys Chem A. 2009 Dec 17;113(50):13845-52 - PubMed
  8. J Phys Chem A. 2017 Jan 26;121(3):717-728 - PubMed
  9. Chem Commun (Camb). 2016 Jan 31;52(9):1778-95 - PubMed
  10. J Chem Theory Comput. 2016 Aug 9;12(8):3788-95 - PubMed
  11. J Chem Theory Comput. 2017 Jul 11;13(7):3185-3197 - PubMed
  12. J Phys Chem A. 2009 Dec 31;113(52):14741-8 - PubMed
  13. J Phys Chem A. 2009 Mar 12;113(10):2092-102 - PubMed
  14. J Phys Chem A. 2014 Oct 9;118(40):9500-11 - PubMed
  15. J Chem Theory Comput. 2014 Apr 8;10(4):1817-23 - PubMed
  16. J Phys Chem B. 2009 May 21;113(20):7225-36 - PubMed
  17. Chem Rev. 2016 May 11;116(9):5038-71 - PubMed
  18. J Phys Chem A. 2010 Apr 1;114(12):4313-24 - PubMed
  19. Chem Rev. 2016 Mar 9;116(5):2775-825 - PubMed
  20. J Phys Chem A. 2018 Mar 08;122(9):2361-2375 - PubMed
  21. Chem Rev. 2015 Aug 26;115(16):8867-95 - PubMed
  22. J Phys Chem A. 2006 Mar 16;110(10):3349-51 - PubMed
  23. J Phys Chem A. 2012 Feb 23;116(7):1838-45 - PubMed
  24. J Phys Chem A. 2015 Nov 5;119(44):10935-45 - PubMed
  25. J Chem Theory Comput. 2011 Nov 8;7(11):3743-3755 - PubMed
  26. Acc Chem Res. 2013 Apr 16;46(4):1020-8 - PubMed
  27. J Am Chem Soc. 2002 Jul 24;124(29):8593-8 - PubMed
  28. J Phys Chem A. 2016 Nov 23;120(46):9235-9243 - PubMed
  29. J Phys Chem A. 2005 Oct 6;109(39):8893-903 - PubMed
  30. Chem Rev. 2016 May 11;116(9):5155-87 - PubMed
  31. Phys Chem Chem Phys. 2013 Nov 14;15(42):18401-9 - PubMed

Publication Types