Display options
Share it on

Plants (Basel). 2018 Sep 02;7(3). doi: 10.3390/plants7030069.

Inhibition of Lipid Peroxidation of Kiwicha (.

Plants (Basel, Switzerland)

Rubén Vilcacundo, Daniel Alejandro Barrio, Lucrecia Piñuel, Patricia Boeri, Andrea Tombari, Adelita Pinto, James Welbaum, Blanca Hernández-Ledesma, Wilman Carrillo

Affiliations

  1. Laboratory of Functional Foods, Faculty of Foods Sciences and Engineering, Technical University of Ambato, Av. Los Chasquis y Rio Payamino, Campus Huachi, Ambato 1801334, Ecuador. [email protected].
  2. CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina. [email protected].
  3. CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina. [email protected].
  4. CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina. [email protected].
  5. CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina. [email protected].
  6. Department of Research, Faculty of Health Sciences, Technical University of Babahoyo, Av. Universitaria Km 21/2 Av. Montalvo., Babahoyo 120301, Ecuador. [email protected].
  7. Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79413, USA. [email protected].
  8. Research Institute of Food Science (CIAL-CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain. [email protected].
  9. Department of Research, Faculty of Health Sciences, Technical University of Babahoyo, Av. Universitaria Km 21/2 Av. Montalvo., Babahoyo 120301, Ecuador. [email protected].

PMID: 30200527 PMCID: PMC6161091 DOI: 10.3390/plants7030069

Abstract

Amaranth protein concentrate (APC) was hydrolyzed under in vitro gastrointestinal conditions. APC proteins were partially degraded by pepsin at pHs 1.2, 2.0, and 3.2. During the intestinal phase (pepsin/pancreatin enzymes at pH 7.0), no polypeptide bands were observed in the gel, suggesting the susceptibility of amaranth proteins to the action of digestive enzymes. The potent in vitro inhibition of lipid peroxidation, shown by the gastric and intestinal digests, was confirmed in the zebrafish larvae, with a 72.86% reduction in oxidation of lipids in the presence of the gastric hydrolysate at pH 2.0, compared to a 95.72% reduction in the presence of the gastrointestinal digest. APC digests were capable of reducing reactive oxygen species (ROS) production in the zebrafish embryo model with a value of fluorescence of 52.5% for the gastric hydrolysate, and 48.4% for the intestinal hydrolysate.

Keywords: kiwicha; lipid peroxidation; protein concentrate; simulated gastrointestinal digestion; zebrafish embryos

References

  1. J Agric Food Chem. 2008 Dec 10;56(23):11464-70 - PubMed
  2. J Pharm Pharmacol. 2001 Oct;53(10):1393-401 - PubMed
  3. Free Radic Res. 2003 May;37(5):543-53 - PubMed
  4. J Agric Food Chem. 2016 Feb 10;64(5):1028-45 - PubMed
  5. Biochemistry. 1992 May 5;31(17):4308-14 - PubMed
  6. J Clin Invest. 1991 Dec;88(6):1886-93 - PubMed
  7. Prog Lipid Res. 2007 Sep;46(5):244-82 - PubMed
  8. Cell Mol Life Sci. 2002 Oct;59(10):1706-13 - PubMed
  9. Foods. 2017 Sep 14;6(9):null - PubMed
  10. Anticancer Res. 2003 Nov-Dec;23(6C):4693-701 - PubMed
  11. J Immunol Methods. 1992 Nov 25;156(1):39-45 - PubMed
  12. Antioxid Redox Signal. 2014 Sep 20;21(9):1422-41 - PubMed
  13. J Med Food. 2016 Jul;19(7):654-62 - PubMed
  14. J Agric Food Chem. 2014 Aug 27;62(34):8648-54 - PubMed
  15. Dose Response. 2012;10(1):1-10 - PubMed
  16. Biochem Pharmacol. 1984 Aug 15;33(16):2669-74 - PubMed
  17. Food Chem. 2018 Mar 1;242:75-82 - PubMed
  18. J Agric Food Chem. 2016 Feb 10;64(5):1046-70 - PubMed
  19. Food Chem. 2017 Mar 1;218:396-405 - PubMed
  20. Nat Rev Genet. 2007 May;8(5):353-67 - PubMed
  21. Curr Neurovasc Res. 2007 May;4(2):111-20 - PubMed
  22. Fish Shellfish Immunol. 2017 Sep;68:525-529 - PubMed
  23. Plant Foods Hum Nutr. 2017 Sep;72(3):294-300 - PubMed
  24. J Nutr Biochem. 2002 May;13(5):273-281 - PubMed
  25. J Nanobiotechnology. 2016 Aug 20;14(1):65 - PubMed
  26. Food Chem. 2017 Sep 01;230:195-207 - PubMed
  27. Biosci Rep. 2017 Jun 8;37(3):null - PubMed
  28. Comp Biochem Physiol C Toxicol Pharmacol. 2009 Mar;149(2):187-95 - PubMed
  29. Neurochem Res. 2001 Jan;26(1):23-9 - PubMed
  30. Food Chem. 2016 Apr 15;197 Pt B:1160-7 - PubMed
  31. J Med Food. 2015 May;18(5):535-41 - PubMed
  32. Alcohol Alcohol Suppl. 1987;1:207-11 - PubMed
  33. Plant J. 2017 Jun;90(5):856-867 - PubMed
  34. Antioxid Redox Signal. 2009 Apr;11(4):861-905 - PubMed
  35. Plant Foods Hum Nutr. 2015 Mar;70(1):27-34 - PubMed
  36. J Agric Food Chem. 2000 Apr;48(4):1129-34 - PubMed
  37. Plant Foods Hum Nutr. 2015 Dec;70(4):371-9 - PubMed
  38. Neurochem Int. 2006 Mar;48(4):318-27 - PubMed
  39. J Neurochem. 1994 Nov;63(5):1855-62 - PubMed
  40. Carbohydr Polym. 2013 Jan 30;92(1):84-9 - PubMed
  41. Life Sci. 2001 May 25;69(1):75-86 - PubMed
  42. Ageing Res Rev. 2010 Jul;9(3):354-62 - PubMed
  43. Neurotoxicol Teratol. 2004 Nov-Dec;26(6):737-43 - PubMed
  44. Life Sci. 2003 Sep 26;73(19):2503-13 - PubMed
  45. Food Res Int. 2018 Mar;105:403-411 - PubMed
  46. Alcohol Alcohol. 1990;25(2-3):231-7 - PubMed
  47. Carbohydr Polym. 2014 Jan;99:365-71 - PubMed

Publication Types