Display options
Share it on

Plast Reconstr Surg Glob Open. 2018 Jul 17;6(7):e1832. doi: 10.1097/GOX.0000000000001832. eCollection 2018 Jul.

Stress Distribution Patterns within Viscero- and Neurocranium during Nasoalveolar Molding: a Finite Element Analysis.

Plastic and reconstructive surgery. Global open

Lucas M Ritschl, Veronika Heinrich, Florian D Grill, Maximilian Roth, Dennis M Hedderich, Andrea Rau, Klaus-Dietrich Wolff, Franz X Bauer, Denys J Loeffelbein

Affiliations

  1. Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technische Universität München, Germany.
  2. Institute of Medical and Polymer Engineering, Technische Universität München, Germany.
  3. Department of Oral and Maxillofacial Surgery, Helios Hospital Munich West, Teaching Hospitalof Ludwig-Maximilians-Universität München, Germany.
  4. Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Germany.

PMID: 30175012 PMCID: PMC6110680 DOI: 10.1097/GOX.0000000000001832

Abstract

BACKGROUND: The purpose of this study was to evaluate the stress distribution patterns within the viscero- and neurocranium of neonates during nasoalveolar molding.

METHODS: Finite element models of 3 different healthy neonates at different times of life (date of birth, 4 weeks, and 3.5 months) were generated on the basis of computed tomography scans. A validated workflow, including segmentation, meshing, setting of boundary conditions, and implementation of a bone density-dependent material model, was carried out for each model. A small and a large unilateral alveolar and hard palatal cleft were virtually cut in each model. The stress distribution pattern in each model was then analyzed by using Ansys APDL.

RESULTS: Convergence analysis validated the results. The virtual experiments at the date of birth showed a stress pattern above a previously defined threshold value of 30,000 Pa in the ipsilateral naso-orbital-complex, frontal sinus, and the anterior fossa of the base of the skull, with von Mises values > 35,000 Pa. Stress patterns at the age of 4 weeks and 3.5 months showed reduced von Mises values at < 15,000 Pa.

CONCLUSIONS: Nasoalveolar molding therapy is a safe presurgical treatment modality without significant influence on the viscero- and neurocranium of neonates. Treatment, considering the stress distribution at the naso-orbital-complex and anterior fossa of the base of the skull, should begin in the second week of life, and treatment initiation of preterm infants should be adapted respectively.

References

  1. Cleft Palate Craniofac J. 2012 Mar;49(2):160-6 - PubMed
  2. Head Face Med. 2014 Apr 21;10:13 - PubMed
  3. J Orofac Orthop. 2005 Jan;66(1):54-66 - PubMed
  4. Cleft Palate Craniofac J. 2013 Mar;50(2):e35-40 - PubMed
  5. J Craniomaxillofac Surg. 1993 Mar;21(2):60-6 - PubMed
  6. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Oct;116(4):418-26 - PubMed
  7. Cleft Palate J. 1976 Jul;13:262-72 - PubMed
  8. J Craniomaxillofac Surg. 2018 Apr;46(4):660-667 - PubMed
  9. J Craniofac Genet Dev Biol. 1993 Jan-Mar;13(1):47-56 - PubMed
  10. J Biomech. 1980;13(1):9-16 - PubMed
  11. J Forensic Sci. 2017 Jan;62(1):39-49 - PubMed
  12. Cleft Palate Craniofac J. 2016 May;53(3):302-8 - PubMed
  13. Cleft Palate Craniofac J. 2005 Nov;42(6):610-7 - PubMed
  14. Biomech Model Mechanobiol. 2017 Jun;16(3):823-840 - PubMed
  15. J Craniomaxillofac Surg. 2016 Apr;44(4):453-9 - PubMed
  16. Cleft Palate Craniofac J. 2017 Jul;54(4):493 - PubMed
  17. Comput Methods Programs Biomed. 2010 Jul;99(1):25-33 - PubMed
  18. Int J Oral Maxillofac Surg. 2012 Jan;41(1):66-73 - PubMed
  19. Cleft Palate Craniofac J. 1999 Nov;36(6):486-98 - PubMed
  20. Br J Ophthalmol. 2015 Oct;99(10):1430-4 - PubMed
  21. Plast Reconstr Surg. 2015 Mar;135(3):833-42 - PubMed
  22. Cleft Palate Craniofac J. 2012 May;49(3):270-5 - PubMed
  23. Plast Reconstr Surg. 2012 Sep;130(3):659-66 - PubMed
  24. Med Eng Phys. 2004 Mar;26(2):109-18 - PubMed
  25. Plast Reconstr Surg. 2011 Apr;127(4):1659-67 - PubMed
  26. Plast Reconstr Surg. 2014 Dec;134(6):926e-36e - PubMed
  27. Prog Orthod. 2016 Dec;17(1):17 - PubMed
  28. Eur J Orthod. 1998 Aug;20(4):347-56 - PubMed
  29. Plast Reconstr Surg. 2013 Jan;131(1):62e-71e - PubMed
  30. Plast Reconstr Surg. 2014 Aug;134(2):275-82 - PubMed
  31. Plast Reconstr Surg. 2009 Mar;123(3):1002-6 - PubMed
  32. J Neurotrauma. 2006 Aug;23(8):1222-32 - PubMed
  33. J Craniofac Surg. 2015 Jun;26(4):1229-33 - PubMed
  34. Cleft Palate Craniofac J. 2011 Sep;48(5):587-95 - PubMed
  35. Cleft Palate Craniofac J. 2006 Nov;43(6):665-72 - PubMed
  36. Cleft Palate J. 1976 Jul;13:253-61 - PubMed
  37. Med Biol Eng Comput. 1996 Sep;34(5):375-81 - PubMed
  38. Plast Reconstr Surg. 2006 Jun;117(7):2373-80; discussion 2381 - PubMed
  39. Plast Reconstr Surg. 1999 Sep;104(3):616-30 - PubMed
  40. Indian J Plast Surg. 2014 Sep-Dec;47(3):293-302 - PubMed
  41. Int J Numer Method Biomed Eng. 2013 Sep;29(9):916-25 - PubMed
  42. J Pediatr Health Care. 1999 Jul-Aug;13(4):173-7 - PubMed
  43. Cleft Palate Craniofac J. 2004 Jul;41(4):375-80 - PubMed
  44. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012 Nov;114(5 Suppl):S74-8 - PubMed
  45. Plast Reconstr Surg Glob Open. 2016 May 06;4(5):e705 - PubMed
  46. Cleft Palate Craniofac J. 2004 Nov;41(6):633-41 - PubMed
  47. PLoS One. 2015 Mar 03;10(3):e0118103 - PubMed
  48. Cleft Palate Craniofac J. 2009 Nov;46(6):654-63 - PubMed
  49. Ann Biomed Eng. 2011 Dec;39(12):2984-97 - PubMed
  50. Med Eng Phys. 2014 Dec;36(12):1684-92 - PubMed
  51. J Biomech Eng. 2000 Aug;122(4):364-71 - PubMed

Publication Types