Display options
Share it on

Saudi Dent J. 2018 Oct;30(4):355-364. doi: 10.1016/j.sdentj.2018.06.002. Epub 2018 Jun 27.

Growth factor release and enhanced encapsulated periodontal stem cells viability by freeze-dried platelet concentrate loaded thermo-sensitive hydrogel for periodontal regeneration.

The Saudi dental journal

Mohamed M Ammar, Gihan H Waly, Sayed H Saniour, Taheya A Moussa

Affiliations

  1. Biomaterials Department, Faculty of Oral and Dental Medicine, Future University, Cairo, Egypt.
  2. Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.

PMID: 30202174 PMCID: PMC6128323 DOI: 10.1016/j.sdentj.2018.06.002

Abstract

Periodontium regeneration is a highly challenging process as it requires the regeneration of three different tissues simultaneously. The aim of this study was to develop a composite material that can be easily applied and can sufficiently deliver essential growth factors and progenitor cells for periodontal tissue regeneration. Freeze-dried platelet concentrate (FDPC) was prepared and incorporated in a thermo-sensitive chitosan/β-glycerol phosphate (β-GP) hydrogel at concentrations of 5, 10, or 15 mg/ml. The viscosity of the hydrogels was investigated as the temperature rises from 25 °C to 37 °C and the release kinetics of transforming growth factor (TGF-β1), platelet-derived growth factor (PDGF-BB) and insulin-like growth factor (IGF-1) were investigated at four time points (1 h, 1 day, 1 week, 2 weeks). Periodontal ligament stem cells (PDLSCs) were isolated from human third molars and encapsulated in the different hydrogel groups. Their viability was investigated after 7 days in culture in comparison to standard culture conditions and non FDPC-loaded hydrogel. Results showed that loading FDPC in the hydrogel lowered the initial viscosity in comparison to the unloaded control group and did not affect the sol-gel transition in any group. All FDPC-loaded hydrogel groups exhibited sustained release of TGF-β1 and PDGF-BB for two weeks with significant difference between the different concentrations. The loading of 10 and 15 mg/ml of FDPC in the hydrogel increased the PDLSCs viability significantly compared to the unloaded hydrogel and was comparable to the standard culture conditions. Accordingly, it may be concluded that loading FDPC in a chitosan/β-GP hydrogel can offer enhanced injectability, a sustained release of growth factors and increased viability of encapsulated stem cells which can be beneficial in periodontium tissue regeneration.

Keywords: Chitosan; Growth factors; Periodontal regeneration; Platelet concentrate; Thermo-sensitive hydrogel

References

  1. Expert Rev Cardiovasc Ther. 2016 Sep;14(9):987-9 - PubMed
  2. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2017 Jan 30;7:27-36 - PubMed
  3. PLoS One. 2015 Mar 06;10(3):e0120803 - PubMed
  4. ScientificWorldJournal. 2014;2014:845293 - PubMed
  5. Lancet. 2004 Jul 10-16;364(9429):149-55 - PubMed
  6. AAPS PharmSciTech. 2012 Jun;13(2):460-6 - PubMed
  7. Arch Oral Biol. 2011 Dec;56(12):1476-84 - PubMed
  8. Biomaterials. 2000 Jan;21(2):153-9 - PubMed
  9. J Pharm Bioallied Sci. 2012 Aug;4(Suppl 2):S334-7 - PubMed
  10. Lancet. 2005 Nov 19;366(9499):1809-20 - PubMed
  11. Dent Clin North Am. 2005 Jul;49(3):517-32, v-vi - PubMed
  12. Cell Transplant. 2011;20(6):797-811 - PubMed
  13. Biomaterials. 2011 Sep;32(25):5819-25 - PubMed
  14. Adv Drug Deliv Rev. 2012 Sep;64(12):1239-56 - PubMed
  15. Aesthetic Plast Surg. 2016 Feb;40(1):157-63 - PubMed
  16. Int Rev Neurobiol. 2013;108:1-33 - PubMed
  17. Arch Oral Biol. 2017 Jan;73:172-178 - PubMed
  18. Biomed Mater. 2012 Apr;7(2):024101 - PubMed
  19. J Biomed Mater Res A. 2017 Aug;105(8):2119-2128 - PubMed
  20. Plast Reconstr Surg. 2008 Nov;122(5):1352-60 - PubMed
  21. J Control Release. 2000 Feb 14;64(1-3):133-42 - PubMed
  22. Tissue Eng. 2007 Aug;13(8):1905-25 - PubMed
  23. Stem Cells Int. 2015;2015:972313 - PubMed
  24. Am J Sports Med. 2012 May;40(5):1035-45 - PubMed
  25. Cornea. 2009 Feb;28(2):200-5 - PubMed
  26. J Periodontal Res. 2009 Apr;44(2):258-65 - PubMed
  27. Nature. 2008 May 15;453(7193):314-21 - PubMed
  28. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):397-401 - PubMed
  29. Eur Cell Mater. 2006 Jul 24;12:1-15 - PubMed
  30. Biomed Mater. 2014 Jun;9(3):035011 - PubMed
  31. Tissue Eng Part C Methods. 2009 Sep;15(3):431-5 - PubMed
  32. Wound Repair Regen. 2006 Sep-Oct;14(5):573-80 - PubMed
  33. Biochim Biophys Acta. 2013 Oct;1834(10):2176-86 - PubMed
  34. Clin Oral Implants Res. 2006 Oct;17(5):572-8 - PubMed
  35. Plast Reconstr Surg. 2004 Nov;114(6):1502-8 - PubMed
  36. Biomed Res Int. 2014;2014:287896 - PubMed
  37. Int J Dent Hyg. 2009 May;7(2):82-9 - PubMed
  38. Open Dent J. 2013 Jul 26;7:76-81 - PubMed
  39. Orthop Clin North Am. 2000 Jul;31(3):351-6 - PubMed
  40. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6792-6 - PubMed
  41. Biomaterials. 2010 May;31(14):3976-85 - PubMed
  42. Am J Sports Med. 2009 Nov;37(11):2259-72 - PubMed
  43. Blood. 1974 Jan;43(1):131-6 - PubMed
  44. Development. 2013 Jan 15;140(2):255-65 - PubMed
  45. Aust Dent J. 2014 Jun;59 Suppl 1:117-30 - PubMed
  46. Curr Opin Biotechnol. 2005 Aug;16(4):422-6 - PubMed
  47. Int J Pharm. 2005 Jan 6;288(1):17-25 - PubMed
  48. Wound Repair Regen. 2008 Sep-Oct;16(5):585-601 - PubMed
  49. Oral Dis. 2012 Jul;18(5):494-500 - PubMed
  50. Biomaterials. 2010 Nov;31(31):7892-927 - PubMed
  51. Int J Pharm. 2000 Aug 10;203(1-2):89-98 - PubMed
  52. J Cell Physiol. 2009 Jun;219(3):667-76 - PubMed

Publication Types