Display options
Share it on

Conserv Physiol. 2018 Sep 18;6(1):coy053. doi: 10.1093/conphys/coy053. eCollection 2018.

Dead tired: evaluating the physiological status and survival of neonatal reef sharks under stress.

Conservation physiology

Ian A Bouyoucos, Ornella C Weideli, Serge Planes, Colin A Simpfendorfer, Jodie L Rummer

Affiliations

  1. Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.
  2. PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France.
  3. Laboratoire d'Excellence "CORAIL", EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia.
  4. Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.

PMID: 30254751 PMCID: PMC6142904 DOI: 10.1093/conphys/coy053

Abstract

Marine protected areas (MPAs) can protect shark populations from targeted fisheries, but resident shark populations may remain exposed to stressors like capture as bycatch and environmental change. Populations of young sharks that rely on shallow coastal habitats, e.g. as nursery areas, may be at risk of experiencing these stressors. The purpose of this study was to characterize various components of the physiological stress response of neonatal reef sharks following exposure to an exhaustive challenge under relevant environmental conditions. To accomplish this, we monitored markers of the secondary stress response and measured oxygen uptake rates (

Keywords: Bycatch; marine protected areas; oxygen uptake rates; physiological stress response; shark nursery areas; temperature

References

  1. Glob Chang Biol. 2018 May;24(5):1884-1893 - PubMed
  2. J Comp Physiol B. 2003 Aug;173(6):463-74 - PubMed
  3. Mol Ecol. 2013 Jan;22(1):201-14 - PubMed
  4. Comp Biochem Physiol A Mol Integr Physiol. 2012 Jun;162(2):81-7 - PubMed
  5. Conserv Physiol. 2016 Mar 23;4(1):cow008 - PubMed
  6. J Fish Biol. 2016 Jan;88(1):65-80 - PubMed
  7. Fish Physiol Biochem. 2018 Jun;44(3):949-967 - PubMed
  8. Glob Chang Biol. 2014 Apr;20(4):1055-66 - PubMed
  9. Science. 2011 Apr 1;332(6025):109-12 - PubMed
  10. J Exp Biol. 2013 Aug 1;216(Pt 15):2771-82 - PubMed
  11. Comp Biochem Physiol A Mol Integr Physiol. 2012 Jun;162(2):94-100 - PubMed
  12. Med Sci Sports Exerc. 1984;16(1):29-43 - PubMed
  13. Conserv Physiol. 2013 Sep 21;1(1):cot023 - PubMed
  14. J Fish Biol. 2017 Mar;90(3):653-722 - PubMed
  15. Comp Biochem Physiol A Mol Integr Physiol. 2012 Jun;162(2):146-55 - PubMed
  16. Science. 2018 May 18;360(6390):723 - PubMed
  17. Fish Physiol Biochem. 2006 Mar;32(1):67-71 - PubMed
  18. PLoS One. 2013 Aug 13;8(8):e73899 - PubMed
  19. Biol Lett. 2017 Mar;13(3): - PubMed
  20. Oecologia. 1975 Sep;19(3):195-201 - PubMed
  21. Comp Biochem Physiol A Mol Integr Physiol. 2012 Jun;162(2):88-93 - PubMed
  22. Biol Lett. 2017 Mar;13(3):null - PubMed
  23. J Fish Biol. 2016 Jan;88(1):26-50 - PubMed
  24. PLoS One. 2016 Feb 17;11(2):e0148829 - PubMed
  25. Conserv Physiol. 2015 Dec 21;3(1):cov062 - PubMed
  26. J Exp Biol. 2016 Jun 1;219(Pt 11):1725-33 - PubMed
  27. Conserv Biol. 2017 Jun;31(3):635-645 - PubMed
  28. Conserv Physiol. 2014 Feb 05;2(1):cot036 - PubMed
  29. Comp Biochem Physiol A Mol Integr Physiol. 2017 May;207:65-72 - PubMed
  30. Conserv Physiol. 2014 Oct 15;2(1):cou047 - PubMed
  31. Conserv Physiol. 2017 Feb 27;5(1):cox012 - PubMed
  32. J Fish Biol. 2013 Mar;82(3):979-93 - PubMed
  33. Respir Physiol. 1977 Jun;30(1-2):221-39 - PubMed
  34. Exp Biol. 1989;48(5):279-83 - PubMed
  35. Conserv Physiol. 2017 Feb 23;5(1):cox005 - PubMed
  36. Elife. 2014;3:e00590 - PubMed
  37. PLoS One. 2017 May 9;12(5):e0176862 - PubMed

Publication Types