Display options
Share it on

MAbs. 2019 Jan;11(1):116-128. doi: 10.1080/19420862.2018.1531664. Epub 2018 Nov 11.

Comprehensive characterisation of the heterogeneity of adalimumab via charge variant analysis hyphenated on-line to native high resolution Orbitrap mass spectrometry.

mAbs

Florian Füssl, Anne Trappe, Ken Cook, Kai Scheffler, Oliver Fitzgerald, Jonathan Bones

Affiliations

  1. a Characterisation and Comparability Lab , NIBRT - The National Institute for Bioprocessing Research and Training , Co , Dublin , Ireland.
  2. b School of Biotechnology , Dublin City University , Dublin 9 , Ireland.
  3. c Thermo Fisher Scientific , Hemel Hempstead , UK.
  4. d Thermo Fisher Scientific , Germering , Germany.
  5. e St. Vincent's University Hospital , Dublin 4 , Ireland.
  6. f Conway Institute of Biomolecular and Biomedical Research , University College Dublin , Dublin 4 , Ireland.
  7. g School of Chemical and Bioprocess Engineering, University College Dublin , Dublin 4 , Ireland.

PMID: 30296204 PMCID: PMC6343805 DOI: 10.1080/19420862.2018.1531664

Abstract

Charge variant analysis is a widely used tool to monitor changes in product quality during the manufacturing process of monoclonal antibodies (mAbs). Although it is a powerful technique for revealing mAb heterogeneity, an unexpected outcome, for example the appearance of previously undetected isoforms, requires further, time-consuming analysis. The process of identifying these unknowns can also result in unwanted changes to the molecule that are not attributable to the manufacturing process. To overcome this, we recently reported a method combining highly selective cation exchange chromatography-based charge variant analysis with on-line mass spectrometric (MS) detection. We further explored and adapted the chromatographic buffer system to expand the application range. Moreover, we observed no salt adducts on the native protein, also supported by the optimal choice of MS parameters, resulting in increased data quality and mass accuracy. Here, we demonstrate the utility of this improved method by performing an in-depth analysis of adalimumab before and after forced degradation. By combining molecular mass and retention time information, we were able to identify multiple modifications on adalimumab, including lysine truncation, glycation, deamidation, succinimide formation, isomerisation, N-terminal aspartic acid loss or C-terminal proline amidation and fragmentation along with the N-glycan distribution of each of these identified proteoforms. Host cell protein (HCP) analysis was performed using liquid chromatography-mass spectrometry that verified the presence of the protease Cathepsin L. Based on the presence of trace HCPs with catalytic activity, it can be questioned if fragmentation is solely driven by spontaneous hydrolysis or possibly also by enzymatic degradation.

Keywords: Orbitrap; adalimumab; cation exchange chromatography; charge variant analysis; high resolution mass spectrometry; monoclonal antibodies; native mass spectrometry

References

  1. MAbs. 2010 Nov-Dec;2(6):613-24 - PubMed
  2. Anal Chem. 2015 Aug 18;87(16):8307-15 - PubMed
  3. Exp Parasitol. 2000 Feb;94(2):99-110 - PubMed
  4. Biochimie. 2016 Mar;122:5-30 - PubMed
  5. MAbs. 2015;7(5):805-11 - PubMed
  6. J Chromatogr B Biomed Sci Appl. 2001 Mar 10;752(2):233-45 - PubMed
  7. MAbs. 2017 Jul;9(5):820-830 - PubMed
  8. Pharm Res. 2012 Jan;29(1):209-24 - PubMed
  9. J Chromatogr A. 2013 Nov 22;1317:148-54 - PubMed
  10. J Pharm Sci. 2008 Jul;97(7):2426-47 - PubMed
  11. MAbs. 2011 May-Jun;3(3):253-63 - PubMed
  12. Eur J Pharm Biopharm. 2008 Sep;70(1):42-50 - PubMed
  13. J Chromatogr A. 2014 Dec 19;1373:124-30 - PubMed
  14. Analyst. 2017 Jan 16;142(2):336-344 - PubMed
  15. Anal Biochem. 2017 Mar 1;520:49-57 - PubMed
  16. J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Oct 15;1065-1066:119-128 - PubMed
  17. J Pharm Biomed Anal. 2015 Jan;102:282-9 - PubMed
  18. Biotechnol Bioeng. 2011 Apr;108(4):977-82 - PubMed
  19. MAbs. 2016 Nov/Dec;8(8):1548-1560 - PubMed
  20. Anal Chem. 2015 Oct 6;87(19):10138-45 - PubMed
  21. Anal Chem. 2018 Apr 3;90(7):4669-4676 - PubMed
  22. Pharm Res. 2008 Aug;25(8):1881-90 - PubMed
  23. J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Oct 15;858(1-2):254-62 - PubMed
  24. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Apr 25;818(2):115-21 - PubMed
  25. Anal Chem. 2015 Sep 1;87(17):9084-92 - PubMed
  26. Anal Biochem. 2008 Feb 15;373(2):179-91 - PubMed
  27. Anal Chem. 2018 Feb 6;90(3):2119-2125 - PubMed
  28. J Am Chem Soc. 2007 Jun 6;129(22):6976-7 - PubMed
  29. Pharm Res. 2007 Jun;24(6):1145-56 - PubMed
  30. Anal Chem. 2015 Jun 16;87(12):6204-11 - PubMed
  31. J Pharm Sci. 2007 Oct;96(10):2607-21 - PubMed
  32. J Pharm Sci. 2009 Dec;98(12):4501-10 - PubMed
  33. MAbs. 2016;8(2):331-9 - PubMed
  34. Biotechnol Bioeng. 2009 Dec 15;104(6):1132-41 - PubMed
  35. Nat Rev Drug Discov. 2012 Jun 29;11(7):527-40 - PubMed
  36. Biotechnol Prog. 2015 Sep-Oct;31(5):1360-9 - PubMed
  37. J Am Soc Mass Spectrom. 2009 Aug;20(8):1486-95 - PubMed
  38. J Pharm Sci. 2014 May;103(5):1315-30 - PubMed
  39. Anal Chem. 2017 Nov 7;89(21):11357-11365 - PubMed
  40. BioDrugs. 2016 Aug;30(4):321-38 - PubMed
  41. Iran Biomed J. ;21(3):131-41 - PubMed
  42. PLoS One. 2012;7(1):e30295 - PubMed
  43. J Pharm Biomed Anal. 2015 Jan;102:33-44 - PubMed
  44. J Pharm Biomed Anal. 2015 Sep 10;113:43-55 - PubMed
  45. Nucleic Acids Res. 2010 Jan;38(Database issue):D227-33 - PubMed
  46. MAbs. 2012 Sep-Oct;4(5):578-85 - PubMed
  47. MAbs. 2014 Mar-Apr;6(2):327-39 - PubMed
  48. MAbs. 2011 Nov-Dec;3(6):577-83 - PubMed

Substances

MeSH terms

Publication Types