Display options
Share it on

iScience. 2018 Sep 28;7:85-95. doi: 10.1016/j.isci.2018.08.019. Epub 2018 Aug 29.

Glutamate Signaling in the Fly Visual System.

iScience

Florian G Richter, Sandra Fendl, Jürgen Haag, Michael S Drews, Alexander Borst

Affiliations

  1. Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany. Electronic address: [email protected].
  2. Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany.
  3. Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany. Electronic address: [email protected].

PMID: 30267688 PMCID: PMC6135900 DOI: 10.1016/j.isci.2018.08.019

Abstract

For a proper understanding of neural circuit function, it is important to know which signals neurons relay to their downstream partners. Calcium imaging with genetically encoded calcium sensors like GCaMP has become the default approach for mapping these responses. How well such measurements represent the true neurotransmitter output of any given cell, however, remains unclear. Here, we demonstrate the viability of the glutamate sensor iGluSnFR for 2-photon in vivo imaging in Drosophila melanogaster and prove its usefulness for estimating spatiotemporal receptive fields in the visual system. We compare the results obtained with iGluSnFR with the ones obtained with GCaMP6f and find that the spatial aspects of the receptive fields are preserved between indicators. In the temporal domain, however, measurements obtained with iGluSnFR reveal the underlying response properties to be much faster than those acquired with GCaMP6f. Our approach thus offers a more accurate description of glutamatergic neurons in the fruit fly.

Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

Keywords: Optical Imaging; Sensory Neuroscience; Techniques in Neuroscience

References

  1. Cell Tissue Res. 1992 Jan;267(1):17-28 - PubMed
  2. Cell. 2016 Jun 30;166(1):245-57 - PubMed
  3. Nature. 2013 Aug 8;500(7461):212-6 - PubMed
  4. J Neurophysiol. 2010 Mar;103(3):1646-57 - PubMed
  5. Neuron. 2013 Jul 10;79(1):128-40 - PubMed
  6. Neuron. 2011 Jun 23;70(6):1165-77 - PubMed
  7. Nat Neurosci. 2014 Jun;17(6):884-9 - PubMed
  8. Neuron. 2013 Jul 10;79(1):111-27 - PubMed
  9. J Neurosci. 2004 Oct 13;24(41):9105-16 - PubMed
  10. Nature. 2010 Nov 11;468(7321):300-4 - PubMed
  11. Elife. 2017 Apr 22;6: - PubMed
  12. Nature. 1989 Jun 29;339(6227):704-6 - PubMed
  13. Pharmacol Rev. 2010 Sep;62(3):405-96 - PubMed
  14. Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):437-67 - PubMed
  15. Network. 2001 May;12(2):199-213 - PubMed
  16. Cell. 2013 Aug 15;154(4):904-13 - PubMed
  17. Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10294-9 - PubMed
  18. Nature. 2014 Aug 28;512(7515):427-30 - PubMed
  19. J Physiol Paris. 1993;87(1):25-36 - PubMed
  20. Cell Tissue Res. 1992 Oct;270(1):25-35 - PubMed
  21. Nat Neurosci. 2016 May;19(5):706-715 - PubMed
  22. Annu Rev Neurosci. 1985;8:547-83 - PubMed
  23. Cell Tissue Res. 1980;208(3):371-87 - PubMed
  24. Neuron. 2017 Apr 5;94(1):168-182.e10 - PubMed
  25. J Physiol. 1965 Jun;178(3):477-504 - PubMed
  26. Neuron. 2007 Oct 4;56(1):155-70 - PubMed
  27. Science. 1994 Nov 11;266(5187):1059-62 - PubMed
  28. J Neurosci. 2013 Jan 16;33(3):902-5 - PubMed
  29. Nature. 2013 Jul 18;499(7458):295-300 - PubMed
  30. Neuron. 2012 Sep 6;75(5):779-85 - PubMed
  31. Cell. 1995 Mar 10;80(5):757-65 - PubMed
  32. Elife. 2016 Aug 09;5: - PubMed
  33. Gene Expr Patterns. 2006 Mar;6(3):299-309 - PubMed
  34. Curr Biol. 2015 Feb 16;25(4):467-72 - PubMed
  35. J Neurosci. 2014 Feb 5;34(6):2254-63 - PubMed
  36. Theor Biol Med Model. 2007 Feb 06;4:7 - PubMed
  37. J Nutr. 2000 Apr;130(4S Suppl):1007S-15S - PubMed
  38. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 May;200(5):359-70 - PubMed
  39. J Biol Chem. 1996 Aug 16;271(33):20187-91 - PubMed
  40. Brain Res. 2008 Aug 15;1225:26-38 - PubMed
  41. Elife. 2017 Aug 22;6: - PubMed
  42. Eur J Neurosci. 2014 Nov;40(9):3285-93 - PubMed
  43. Neuron. 2000 Apr;26(1):35-43 - PubMed
  44. J Neurosci. 2004 Nov 17;24(46):10466-74 - PubMed
  45. PLoS One. 2008 May 07;3(5):e2110 - PubMed
  46. Nat Neurosci. 2018 Feb;21(2):250-257 - PubMed
  47. Nat Rev Neurosci. 2014 Aug;15(8):507-19 - PubMed
  48. J Physiol. 2004 Aug 1;558(Pt 3):717-28 - PubMed
  49. J Physiol. 2013 Sep 15;591(18):4427-37 - PubMed
  50. J Vis Exp. 2016 Jun 19;(112): - PubMed
  51. Curr Biol. 2017 Apr 3;27(7):929-944 - PubMed
  52. Annu Rev Pharmacol Toxicol. 1997;37:205-37 - PubMed
  53. Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):427-59 - PubMed
  54. PLoS One. 2011 May 05;6(5):e19472 - PubMed
  55. Neuron. 2011 Jun 23;70(6):1155-64 - PubMed
  56. PLoS Comput Biol. 2018 Jun 13;14(6):e1006240 - PubMed
  57. Nat Methods. 2013 Feb;10(2):162-70 - PubMed
  58. J Comp Neurol. 2002 Dec 23;454(4):470-81 - PubMed
  59. Neuron. 2016 Dec 7;92(5):1036-1048 - PubMed
  60. Nature. 2001 Sep 13;413(6852):186-93 - PubMed
  61. Curr Biol. 2014 May 19;24(10):1062-70 - PubMed
  62. Cell. 2015 Jul 16;162(2):351-362 - PubMed
  63. Curr Biol. 2011 Dec 20;21(24):2077-84 - PubMed

Publication Types