Display options
Share it on

Front Synaptic Neurosci. 2018 Sep 21;10:32. doi: 10.3389/fnsyn.2018.00032. eCollection 2018.

Dopamine Receptor Activation Is Required for GABAergic Spike Timing-Dependent Plasticity in Response to Complex Spike Pairing in the Ventral Tegmental Area.

Frontiers in synaptic neuroscience

Ludovic D Langlois, Matthieu Dacher, Fereshteh S Nugent

Affiliations

  1. Department of Pharmacology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.

PMID: 30297996 PMCID: PMC6160785 DOI: 10.3389/fnsyn.2018.00032

Abstract

One of the most influential synaptic learning rules explored in the past decades is activity dependent spike-timing-dependent plasticity (STDP). In STDP, synapses are either potentiated or depressed based on the order of pre- and postsynaptic neuronal activation within narrow, milliseconds-long, time intervals. STDP is subject to neuromodulation by dopamine (DA), a potent neurotransmitter that significantly impacts synaptic plasticity and reward-related behavioral learning. Previously, we demonstrated that GABAergic synapses onto ventral tegmental area (VTA) DA neurons are able to express STDP (Kodangattil et al., 2013), however it is still unclear whether DA modulates inhibitory STDP in the VTA. Here, we used whole-cell recordings in rat midbrain slices to investigate whether DA D1-like and/or D2-like receptor (D1R/D2R) activation is required for induction of STDP in response to a complex pattern of spiking. We found that VTA but not Substantia nigra pars compact (SNc) DA neurons exhibit long-term depression (LTD

Keywords: GABAergic synapses; LTD; STDP; VTA; long-term depression; spike-timing dependent plasticity; synaptic plasticity; ventral tegmental area

References

  1. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13028-33 - PubMed
  2. J Physiol. 1992 May;450:455-68 - PubMed
  3. Neuron. 2004 Jun 24;42(6):939-46 - PubMed
  4. Neuron. 2015 Jun 3;86(5):1145-57 - PubMed
  5. Neuropharmacology. 2011 Dec;61(7):1166-71 - PubMed
  6. Nature. 1993 Nov 25;366(6453):344-7 - PubMed
  7. Annu Rev Neurosci. 2008;31:25-46 - PubMed
  8. ACS Chem Neurosci. 2017 Sep 20;8(9):1830-1838 - PubMed
  9. Eur J Neurosci. 2018 May;47(10):1208-1218 - PubMed
  10. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2938-42 - PubMed
  11. J Neurophysiol. 1997 Feb;77(2):853-62 - PubMed
  12. J Neurosci. 2010 May 19;30(20):6975-83 - PubMed
  13. J Neurosci. 1992 Jul;12(7):2623-32 - PubMed
  14. J Neurosci. 2008 Dec 24;28(52):14018-30 - PubMed
  15. Neurosci Lett. 1989 Aug 14;103(1):97-102 - PubMed
  16. Front Synaptic Neurosci. 2010 Oct 25;2:146 - PubMed
  17. Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16366-71 - PubMed
  18. Eur J Neurosci. 2007 Sep;26(6):1479-88 - PubMed
  19. Neuron. 2012 Aug 23;75(4):556-71 - PubMed
  20. Elife. 2015 Oct 30;4:null - PubMed
  21. J Physiol. 2006 Dec 15;577(Pt 3):907-24 - PubMed
  22. Alcohol. 1996 Nov-Dec;13(6):569-74 - PubMed
  23. Neurosci Lett. 2003 Sep 11;348(2):61-4 - PubMed
  24. Cell. 2015 Jul 30;162(3):622-34 - PubMed
  25. J Neurosci. 2013 Feb 6;33(6):2650-60 - PubMed
  26. J Neurosci. 2006 Aug 16;26(33):8549-58 - PubMed
  27. Front Comput Neurosci. 2018 Jul 03;12:49 - PubMed
  28. J Neurosci. 2008 Mar 5;28(10):2435-46 - PubMed
  29. Neuron. 2015 Jun 3;86(5):1240-52 - PubMed
  30. J Neurosci. 2017 Nov 15;37(46):11166-11180 - PubMed
  31. Neuropharmacology. 2010 Nov;59(6):431-6 - PubMed
  32. Science. 2008 Aug 8;321(5890):848-51 - PubMed
  33. Physiol Rev. 2006 Jul;86(3):1033-48 - PubMed
  34. J Physiol. 2007 Dec 1;585(Pt 2):549-63 - PubMed
  35. Front Neural Circuits. 2014 Apr 23;8:38 - PubMed
  36. J Neurosci. 2012 Oct 10;32(41):14094-101 - PubMed
  37. J Physiol. 2013 Oct 1;591(19):4699-710 - PubMed

Publication Types

Grant support