Display options
Share it on

Front Syst Neurosci. 2018 Sep 07;12:40. doi: 10.3389/fnsys.2018.00040. eCollection 2018.

Sleep Promotes, and Sleep Loss Inhibits, Selective Changes in Firing Rate, Response Properties and Functional Connectivity of Primary Visual Cortex Neurons.

Frontiers in systems neuroscience

Brittany C Clawson, Jaclyn Durkin, Aneesha K Suresh, Emily J Pickup, Christopher G Broussard, Sara J Aton

Affiliations

  1. Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
  2. Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.
  3. Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States.
  4. Information Technology Advocacy and Research Support, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, United States.

PMID: 30245617 PMCID: PMC6137342 DOI: 10.3389/fnsys.2018.00040

Abstract

Recent studies suggest that sleep differentially alters the activity of cortical neurons based on firing rates during preceding wake-increasing the firing rates of sparsely firing neurons and decreasing those of faster firing neurons. Because sparsely firing cortical neurons may play a specialized role in sensory processing, sleep could facilitate sensory function via selective actions on sparsely firing neurons. To test this hypothesis, we analyzed longitudinal electrophysiological recordings of primary visual cortex (V1) neurons across a novel visual experience which induces V1 plasticity (or a control experience which does not), and a period of subsequent

Keywords: excitability; in vivo recording; information processing; sensory cortex; signal-to-noise

References

  1. Sleep. 2014 Jul 01;37(7):1163-70 - PubMed
  2. Nature. 2004 Jul 1;430(6995):78-81 - PubMed
  3. Neurobiol Learn Mem. 2018 Apr 7;:null - PubMed
  4. Neuron. 2014 Jan 8;81(1):12-34 - PubMed
  5. Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10485-10490 - PubMed
  6. Neurosci Lett. 2015 Sep 14;604:103-8 - PubMed
  7. Sleep. 2016 Jan 01;39(1):155-9 - PubMed
  8. J Neurosci. 2011 Jun 15;31(24):8699-705 - PubMed
  9. Curr Biol. 2018 Jun 4;28(11):1736-1743.e4 - PubMed
  10. Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E3017-E3025 - PubMed
  11. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3101-6 - PubMed
  12. Neuron. 2001 Apr;30(1):275-87 - PubMed
  13. Neuron. 2004 Jan 8;41(1):35-43 - PubMed
  14. J Neurosci. 2010 Dec 1;30(48):16304-13 - PubMed
  15. J Neurophysiol. 2005 Mar;93(3):1671-98 - PubMed
  16. Sleep. 2015 Jan 01;38(1):161-2 - PubMed
  17. Neuron. 2009 Feb 12;61(3):454-66 - PubMed
  18. Neuron. 2009 Sep 24;63(6):865-78 - PubMed
  19. Nat Neurosci. 2008 Feb;11(2):200-8 - PubMed
  20. Front Neural Circuits. 2017 Sep 06;11:61 - PubMed
  21. Brain Res Bull. 2003 Dec 15;62(2):143-50 - PubMed
  22. Learn Mem. 1999 Sep-Oct;6(5):500-8 - PubMed
  23. Nature. 2015 May 28;521(7553):511-515 - PubMed
  24. Front Neurosci. 2010 Oct 21;4:165 - PubMed
  25. Curr Biol. 2012 Apr 24;22(8):676-82 - PubMed
  26. Curr Biol. 2016 Apr 4;26(7):893-902 - PubMed
  27. Neuron. 2012 Sep 20;75(6):1105-13 - PubMed
  28. Neuron. 2006 Aug 3;51(3):339-49 - PubMed
  29. J Neurosci. 2016 Jan 27;36(4):1401-9 - PubMed
  30. Neurobiol Learn Mem. 2013 Nov;106:1-10 - PubMed
  31. Science. 2014 Jun 6;344(6188):1173-8 - PubMed
  32. J Neurosci. 2002 Dec 15;22(24):10914-23 - PubMed
  33. J Neurochem. 2005 Oct;95(2):418-28 - PubMed
  34. Nat Commun. 2017 Apr 06;8:15039 - PubMed
  35. Nat Rev Neurosci. 2010 Feb;11(2):114-26 - PubMed
  36. Front Syst Neurosci. 2014 Apr 17;8:61 - PubMed
  37. Physiol Genomics. 2007 Nov 14;31(3):441-57 - PubMed
  38. Neuron. 2012 Sep 20;75(6):1001-7 - PubMed
  39. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3200-3 - PubMed
  40. Neuron. 2016 May 18;90(4):839-52 - PubMed
  41. Science. 2017 Feb 3;355(6324):507-510 - PubMed

Publication Types

Grant support