Display options
Share it on

Front Physiol. 2018 Aug 21;9:1162. doi: 10.3389/fphys.2018.01162. eCollection 2018.

Higuchi Fractal Dimension of Heart Rate Variability During Percutaneous Auricular Vagus Nerve Stimulation in Healthy and Diabetic Subjects.

Frontiers in physiology

Ryszard S Gomolka, Stefan Kampusch, Eugenijus Kaniusas, Florian Thürk, Jozsef C Széles, Wlodzimierz Klonowski

Affiliations

  1. Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
  2. Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Vienna, Austria.
  3. Division of Vascular Surgery, University Clinic for Surgery, Medical University of Vienna, Vienna, Austria.

PMID: 30246789 PMCID: PMC6110872 DOI: 10.3389/fphys.2018.01162

Abstract

Analysis of heart rate variability (HRV) can be applied to assess the autonomic nervous system (ANS) sympathetic and parasympathetic activity. Since living systems are non-linear, evaluation of ANS activity is difficult by means of linear methods. We propose to apply the Higuchi fractal dimension (HFD) method for assessment of ANS activity. HFD measures complexity of the HRV signal. We analyzed 45 RR time series of 84 min duration each from nine healthy and five diabetic subjects with clinically confirmed long-term diabetes mellitus type II and with diabetic foot ulcer lasting more than 6 weeks. Based on HRV time series complexity analysis we have shown that HFD: (1) discriminates healthy subjects from patients with diabetes mellitus type II; (2) assesses the impact of percutaneous auricular vagus nerve stimulation (pVNS) on ANS activity in normal and diabetic conditions. Thus, HFD may be used during pVNS treatment, to provide stimulation feedback for on-line regulation of therapy in a fast and robust way.

Keywords: Higuchi fractal dimension; autonomic nervous system; diabetes; heart rate variability; vagus nerve stimulation

References

  1. Integr Physiol Behav Sci. 1992 Jan-Mar;27(1):39-53 - PubMed
  2. Stud Health Technol Inform. 2009;150:794-8 - PubMed
  3. Europace. 2015 Sep;17(9):1341-53 - PubMed
  4. Clin Physiol Funct Imaging. 2017 Nov;37(6):622-629 - PubMed
  5. Diabetes. 1990 Oct;39(10):1177-81 - PubMed
  6. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4570-3 - PubMed
  7. Nonlinear Biomed Phys. 2007 Jul 05;1(1):5 - PubMed
  8. Comput Methods Programs Biomed. 2016 Sep;133:55-70 - PubMed
  9. Brain Stimul. 2014 Nov-Dec;7(6):871-7 - PubMed
  10. Artif Organs. 2015 Oct;39(10):E202-12 - PubMed
  11. J Med Eng Technol. 2013 Oct;37(7):436-48 - PubMed
  12. Front Physiol. 2010 Oct 14;1:12 - PubMed
  13. Neuroscientist. 2015 Feb;21(1):30-43 - PubMed
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021906 - PubMed
  15. Cardiovasc Res. 1998 Nov;40(2):257-64 - PubMed
  16. Auton Neurosci. 2016 Aug;199:48-53 - PubMed
  17. Chaos. 2007 Mar;17(1):015108 - PubMed
  18. Clin Sci (Lond). 2010 Apr;118(8):537-46 - PubMed
  19. Circulation. 1996 Mar 1;93(5):1043-65 - PubMed
  20. J Appl Physiol (1985). 1993 Dec;75(6):2429-38 - PubMed
  21. Open Cardiovasc Med J. 2009 Sep 10;3:110-23 - PubMed
  22. Front Public Health. 2017 Sep 28;5:258 - PubMed

Publication Types